login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002427
Numerator of (2n+1) B_{2n}, where B_n are the Bernoulli numbers.
(Formerly M2510 N0993)
11
1, 1, -1, 1, -3, 5, -691, 35, -3617, 43867, -1222277, 854513, -1181820455, 76977927, -23749461029, 8615841276005, -84802531453387, 90219075042845, -26315271553053477373, 38089920879940267, -261082718496449122051, 1520097643918070802691
OFFSET
0,5
REFERENCES
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 73.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..314 (terms 0..100 from T. D. Noe)
L. Euler, (E393) De summis serierum numeros Bernoullianos involventium, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 15, p. 93.
M. Kaneko, A recurrence formula for the Bernoulli numbers, Proc. Japan Acad., 71 A (1995), 192-193.
EXAMPLE
(n+1)*B_n gives: 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, ...
MAPLE
gf := z / (1 - exp(-z)): ser := series(gf, z, 84):
seq(numer((n+1)!*coeff(ser, z, n)), n=0..42, 2); # Peter Luschny, Aug 29 2020
MATHEMATICA
Table[Numerator[2(2n+1)BernoulliB[2n]], {n, 1, 30}]
PROG
(PARI) a(n) = numerator((2*n+1)*bernfrac(2*n)); \\ Michel Marcus, Aug 06 2017
(Magma) [Numerator((2*n+1)*Bernoulli(2*n)): n in [1..30]]; // G. C. Greubel, Jul 03 2019
(Sage) [numerator((2*n+1)*bernoulli(2*n)) for n in (1..30)] # G. C. Greubel, Jul 03 2019
CROSSREFS
Denominators are in A006955.
Sequence in context: A247699 A369097 A320939 * A350036 A136134 A119497
KEYWORD
sign,easy,nice,frac
STATUS
approved