OFFSET
0,2
REFERENCES
D. Ford and J. McKay, personal communication, 1991.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. R. Finch, Transitive relations, topologies and partial orders.
S. R. Finch, Transitive relations, topologies and partial orders, June 5, 2003. [Cached copy, with permission of the author]
Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita, MC-finiteness of restricted set partition functions, arXiv:2302.08265 [math.CO], 2023.
J. Klaska, Transitivity and Partial Order, Mathematica Bohemica, 122 (1), 75-82 (1997). Based on a correspondence between transitive relations and partial orders, the author obtains a formula and calculates the first 14 terms. - Jeff McSweeney (jmcsween(AT)mtsu.edu), May 13 2000
Firdous Ahmad Mala, Three Open Problems in Enumerative Combinatorics, J. Appl. Math. Computation (2023) Vol. 7, No. 1, 24-27.
Firdous Ahmad Mala, Why the number of transitive relations is not an integer polynomial, BOHR Int'l J. Eng. (2023) Vol. 2, No. 1, pp. 30-31.
G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
FORMULA
E.g.f.: A(x + exp(x) - 1) where A(x) is the e.g.f. for A001035. - Geoffrey Critzer, Jul 28 2014
MATHEMATICA
P = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {_, _}][[All, 2]];
a[n_] := Sum[P[[k+1]] Sum[Binomial[n, s] StirlingS2[n-s, k-s], {s, 0, k}], {k, 0, n}];
a /@ Range[0, 18] (* Jean-François Alcover, Dec 29 2019, after Charles R Greathouse IV *)
transitive[r_]:=Catch[Do[If[a[[2]]==b[[1]]&&FreeQ[r, {a[[1]], b[[2]]}], Throw[False]], {a, r}, {b, r}]; True];
a[n_]:=Count[Subsets[Tuples[Range[n], 2]], _?transitive]; (* Juan José Alba González, Jul 04 2022 *)
PROG
(PARI) \\ P = [1, 1, 3, 19, ...] is A001035, starting from 0.
a(n)=sum(k=0, n, P[k+1]*sum(s=0, k, binomial(n, s)*stirling(n-s, k-s, 2)))
\\ Charles R Greathouse IV, Sep 05 2011
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 28 2003
a(15)-a(16) from Charles R Greathouse IV, Aug 30 2006
a(17)-a(18) from Charles R Greathouse IV, Sep 05 2011
STATUS
approved