login
A006873
Number of alternating 4-signed permutations.
(Formerly M4430)
5
1, 1, 7, 47, 497, 6241, 95767, 1704527, 34741217, 796079041, 20273087527, 567864586607, 17352768515537, 574448847467041, 20479521468959287, 782259922208550287, 31872138933891307457, 1379749466246228538241, 63243057486503656319047, 3059895336952604166395567
OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Ehrenborg and M. A. Readdy, Sheffer posets and r-signed permutations, Preprint, 1994. (Annotated scanned copy)
Richard Ehrenborg and Margaret A. Readdy, Sheffer posets and r-signed permutations, Annales des Sciences Mathématiques du Québec, 19 (1995), 173-196.
FORMULA
E.g.f.: (sin(x) + cos(3*x)) / cos(4*x). - M. F. Hasler, Apr 28 2013
a(n) = Re(2*((1-I)/(1+I))^n*(1 + Sum_{j=0..n}(binomial(n,j)*Li_{-j}(I)* 4^j))). - Peter Luschny, Apr 29 2013
a(n) ~ sqrt(2-sqrt(2)) * 2^(3*n+3/2) * n^(n+1/2) / (Pi^(n+1/2) * exp(n)). - Vaclav Kotesovec, Feb 25 2014
a(n) ~ GAMMA(n)*8^n/(Pi^n*(2*sqrt(4+2*sqrt(2)))). - Simon Plouffe, Nov 29 2018
MAPLE
per4 := proc(n) local j; 2*((1-I)/(1+I))^n*(1+add(binomial(n, j)* polylog(-j, I)*4^j, j=0..n)) end: A006873 := n -> Re(per4(n));
seq(A006873(i), i=0..11); # Peter Luschny, Apr 29 2013
MATHEMATICA
mx = 17; Range[0, mx]! CoefficientList[ Series[ (Sin[x] + Cos[3x])/Cos[4x], {x, 0, mx}], x] (* Robert G. Wilson v, Apr 28 2013 *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace((sin(x)+cos(3*x))/cos(4*x))) \\ Joerg Arndt, Apr 28 2013
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Sin(x)+Cos(3*x))/Cos(4*x))); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Nov 29 2018
(Sage)
f=(sin(x) + cos(3*x))/cos(4*x)
g=f.taylor(x, 0, 50)
L=g.coefficients()
coeffs={c[1]:c[0]*factorial(c[1]) for c in L}
coeffs # G. C. Greubel, Nov 29 2018
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Added more terms, Joerg Arndt, Apr 28 2013
STATUS
approved