OFFSET
3,1
COMMENTS
R. C. Read incorrectly has a(7) = 118257539400 and a(8) = 154678050727200 which he calculated by hand. - Sean A. Irvine, Jun 27 2017
REFERENCES
R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 3..50
R. C. Read, Letter to N. J. A. Sloane, Feb 04 1971 (gives initial terms of this sequence)
FORMULA
a(n) = A246599(n) + Sum_{k=1..n-1} binomial(2*n-1,2*k-1)*A246599(k)*a(n-k). - Andrew Howroyd, May 22 2018
a(n) ~ 3^(n + 1/2) * n^(3*n) / (sqrt(2) * exp(3*n+2)). - Vaclav Kotesovec, Feb 17 2024
MATHEMATICA
(* b stands for A001501 *) b[n_] := n!^2 Sum[2^(2k-n) 3^(k-n) (3(n-k))! HypergeometricPFQ[{k-n, k-n}, {3(k-n)/2, 1/2 + 3(k-n)/2}, -9/2]/(k! (n-k)!^2), {k, 0, n}]/6^n;
(* c stands for A246599 *) c[n_] := c[n] = Binomial[2n-1, n] b[n] - Sum[ Binomial[2n-1, 2k] Binomial[2k, k] b[k] c[n-k], {k, 1, n-1}];
a[n_] := a[n] = c[n] + Sum[Binomial[2n-1, 2k-1] c[k] a[n-k], {k, 1, n-1}];
Table[a[n], {n, 3, 20}] (* Jean-François Alcover, Jul 07 2018, after Andrew Howroyd *)
PROG
(PARI) \\ here b(n) is A001501
b(n) = {n!^2 * sum(j=0, n, sum(i=0, n-j, my(k=n-i-j); (j + 3*k)! / (3^i * 36^k * i! * k!^2)) / (j! * (-2)^j))}
seq(n)={my(v=vector(n, n, b(n)*binomial(2*n-1, n)), u=vector(n), s=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=3, n-3, 2*binomial(2*n-1, 2*k)*v[k]*u[n-k]); s[n]=u[n] + sum(k=3, n-3, binomial(2*n-1, 2*k-1)*u[k]*s[n-k])); s[3..n]} \\ Andrew Howroyd, May 22 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(7)-a(8) corrected and a(9)-a(12) computed with nauty by Sean A. Irvine, Jun 27 2017
Terms a(13) and beyond from Andrew Howroyd, May 22 2018
STATUS
approved