OFFSET
0,3
COMMENTS
Schlaefli symbol for this polyhedron: {5,3}.
A093485 = first differences; A124388 = second differences; third differences = 27. - Reinhard Zumkeller, Oct 30 2006
One of the 5 Platonic polyhedral (tetrahedral, cube, octahedral, dodecahedral and icosahedral) numbers (cf. A053012). - Daniel Forgues, May 14 2010
From Peter Bala, Sep 09 2013: (Start)
a(n) = binomial(3*n,3). Two related sequences are binomial(3*n+1,3) (A228887) and binomial(3*n+2,3) (A228888). The o.g.f.'s for these three sequences are rational functions whose numerator polynomials are obtained from the fourth row [1, 4, 10, 16, 19, 16, 10, 4, 1] of the triangle of trinomial coefficients A027907 by taking every third term:
Sum_{n >= 1} binomial(3*n,3)*x^n = (x + 16*x^2 + 10*x^3)/(1-x)^4;
Sum_{n >= 1} binomial(3*n+1,3)*x^n = (4*x + 19*x^2 + 4*x^3)/(1-x)^4;
Sum_{n >= 1} binomial(3*n+2,3)*x^n = (10*x + 16*x^2 + x^3)/(1-x)^4. (End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
Tanya Khovanova, Recursive Sequences.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
Victor Meally, Letter to N. J. A. Sloane, no date.
Ed Pegg Jr, Dodecahedral 2024.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: x(1 + 16x + 10x^2)/(1 - x)^4.
a(n) = C(n+2,3) + 16 C(n+1,3) + 10 C(n,3).
a(0)=0, a(1)=1, a(2)=20, a(3)=84, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jul 24 2013
a(n) = binomial(3*n,3). a(-n) = - A228888(n). Sum_{n>=1} 1/a(n) = 1/2*( sqrt(3)*Pi - 3*log(3) ). Sum_{n>=1} (-1)^n/a(n) = 1/3*sqrt(3)*Pi - 4*log(2). - Peter Bala, Sep 09 2013
E.g.f.: x*(2 + 18*x + 9*x^2)*exp(x)/2. - Ilya Gutkovskiy, May 04 2016
From Amiram Eldar, Jan 09 2024: (Start)
Sum_{n>=1} 1/a(n) = (sqrt(3)*Pi - 3*log(3))/2 (A295421).
Sum_{n>=1} (-1)^(n+1)/a(n) = (12*log(2) - sqrt(3)*Pi)/3. (End)
MAPLE
A006566:=(1+16*z+10*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Table[n(3n-1)(3n-2)/2, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 20, 84}, 40] (* Harvey P. Dale, Jul 24 2013 *)
CoefficientList[Series[x (1 + 16 x + 10 x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 11 2015 *)
PROG
(PARI) a(n)=n*(3*n-1)*(3*n-2)/2
(Haskell)
a006566 n = n * (3 * n - 1) * (3 * n - 2) `div` 2
a006566_list = scanl (+) 0 a093485_list -- Reinhard Zumkeller, Jun 16 2013
(Magma) [n*(3*n-1)*(3*n-2)/2: n in [0..40]]; // Vincenzo Librandi, Dec 11 2015
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Henry Bottomley, Nov 23 2001
STATUS
approved