login
A005890
Theta series of hexagonal close-packing with respect to center of triangle between two layers.
(Formerly M2195)
2
0, 0, 0, 3, 0, 0, 1, 0, 0, 3, 0, 1, 2, 0, 0, 4, 0, 2, 2, 2, 2, 2, 1, 2, 1, 1, 0, 4, 0, 0, 0, 2, 1, 6, 2, 4, 1, 2, 1, 2, 0, 5, 2, 3, 1, 6, 0, 4, 0, 4, 2, 2, 2, 4, 0, 2, 0, 5, 2, 2, 2, 4, 0, 2, 1, 4, 3, 5, 2, 2, 0, 2, 2, 9, 2, 6, 3, 6, 0, 4, 2, 2, 3, 8, 2, 2, 1
OFFSET
0,4
COMMENTS
The triangle separates a tetrahedron and an octahedron.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane and B. K. Teo, Theta series and magic numbers for close-packed spherical clusters, J. Chem. Phys. 83 (1985) 6520-6534. See page 6530 equation 66.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of x^3 * ( f(x^3, x^15) * (f(x^16, x^32) * f(x^15, x^39) + x^6 * f(x^8, x^40) * f(x^3, x^51)) + f(x^6, x^12) * (f(x^16, x^32) * f(x^12, x^42) + f(x^8, x^40) * f(x^24, x^30)) ) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Feb 11 2018
G.f.: Sum{i, j, k in Z} x^(9*(i*i + i*j + j*j) + 24*k*k) * (x^(6 - 12*(i+j) - 8*k) + x^(3 - 3*(i+j) + 16*k)). - Michael Somos, Feb 11 2018
EXAMPLE
G.f. = 3*x^3 + x^6 + 3*x^9 + x^11 + 2*x^12 + 4*x^15 + 2*x^17 + 2*x^18 + 2*x^19 + ...
MATHEMATICA
f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; a[n_] := SeriesCoefficient[x^3*(f[x^3, x^15]*(f[x^16, x^32]* f[x^15, x^39] + x^6*f[x^8, x^40]*f[x^3, x^51]) + f[x^6, x^12]*(f[x^16, x^32]*f[x^12, x^42] + f[x^8, x^40]*f[x^24, x^30])), {x, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 02 2018 *)
CROSSREFS
KEYWORD
nonn
STATUS
approved