login
A005872
Theta series of hexagonal close-packing with respect to octahedral hole.
(Formerly M4040)
5
0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 12, 0, 6, 0, 0, 0, 0, 0, 12, 0, 0, 0, 18, 0, 0, 0, 0, 0, 12, 0, 12, 0, 0, 0, 24, 0, 6, 0, 0, 0, 0, 0, 12, 0, 0, 0, 24, 0, 0, 0, 0, 0, 24, 0, 6, 0, 0, 0, 36, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 30, 0, 0, 0, 0, 0, 18
OFFSET
0,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
N. J. A. Sloane and B. K. Teo, Theta series and magic numbers for close-packed spherical clusters, J. Chem. Phys. 83 (1985) 6520-6534.
LINKS
FORMULA
a(2*n) = 0. a(2*n + 3) = 6*A298931(n). - Michael Somos, Jul 06 2018
EXAMPLE
G.f. = 6*q^3 + 6*q^9 + 6*q^11 + 12*q^15 + 6*q^17 + 12*q^23 + 18*q^27 + ... - Michael Somos, Jul 06 2018
MATHEMATICA
a[ n_] := SeriesCoefficient[ 6 x^3 QPochhammer[ x^16]^2 QPochhammer[ x^18]^3 / (QPochhammer[ x^6] QPochhammer[ x^8]), {x, 0, n}]; (* Michael Somos, Jul 06 2018 *)
PROG
(PARI) {a(n) = my(A, m); if( n<3 || n%2==0, 0, m = n\2 - 1; A = x * O(x^m); 6 * polcoeff( eta(x^8 + A)^2 * eta(x^9 + A)^3 / (eta(x^3 + A) * eta(x^4 + A)), m))}; /* Michael Somos, Jul 06 2018 */
CROSSREFS
Cf. A298931.
Sequence in context: A200214 A294887 A331979 * A035322 A270031 A284105
KEYWORD
nonn,easy
AUTHOR
STATUS
approved