login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005464
Number of simplices in barycentric subdivision of n-simplex.
(Formerly M5391)
5
1, 127, 6050, 204630, 5921520, 158838240, 4115105280, 105398092800, 2706620716800, 70309810771200, 1858166876966400, 50148628078348800, 1385482985542656000, 39245951652171264000, 1140942623868343296000, 34060437199245929472000, 1044402668566817624064000, 32895725269182358302720000
OFFSET
5,2
REFERENCES
R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.
R. K. Guy, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Austin, R. K. Guy, and R. Nowakowski, Unpublished notes, 1987
Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
FORMULA
Essentially Stirling numbers of second kind - see A028246.
a(n) = (n-5)! * Stirling2(n+2, n-4). - G. C. Greubel, Nov 22 2022
MAPLE
seq((d+2)!*(63*d^5-945*d^4+5355*d^3-13951*d^2+15806*d-5304)/2903040, d=5..30) ; # R. J. Mathar, Mar 19 2018
MATHEMATICA
Table[(n-5)!*StirlingS2[n+2, n-4], {n, 5, 35}] (* G. C. Greubel, Nov 22 2022 *)
PROG
(Magma) [Factorial(n-5)*StirlingSecond(n+2, n-4): n in [5..35]]; // G. C. Greubel, Nov 22 2022
(SageMath) [factorial(n-5)*stirling_number2(n+2, n-4) for n in range(5, 36)] # G. C. Greubel, Nov 22 2022
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved