login
A005189
Number of n-term 2-sided generalized Fibonacci sequences.
(Formerly M2976)
2
1, 1, 1, 3, 14, 85, 626, 5387, 52882, 582149, 7094234, 94730611, 1374650042, 21529197077, 361809517954, 6492232196699, 123852300381986, 2502521367966277, 53379537613065002, 1198434678728086019, 28245547605034208074, 697186985180529270101
OFFSET
0,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
C. Banderier, H.-K. Hwang, V. Ravelomanana and V. Zacharovas, Analysis of an exhaustive search algorithm in random graphs and the n^{c logn}-asymptotics, SIAM J. Discrete Math., 28(1), 342-371. (30 pages), DOI:10.1137/130916357. - From N. J. A. Sloane, Dec 23 2012
Peter C. Fishburn, Peter C. Marcus-Roberts, Fred S. Roberts, Unique finite difference measurement, SIAM J. Discrete Math. 1 (1988), no. 3, 334-354.
P. C. Fishburn, A. M. Odlyzko and F. S. Roberts, 2-sided generalized Fibonacci sequences, Fib. Quart., 27 (1989), 352-361.
Rui-Li Liu, Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
Poloni, Federico; Del Corso, Gianna M. Counting Fiedler pencils with repetitions. Linear Algebra Appl. 532, 463-499 (2017).
FORMULA
If n <= 2 then a(n) = 1 otherwise a(n) = 2*(n-1)*a(n-1)-(n-2)^2*a(n-2).
E.g.f.: (e*Ei(1/(x-1)) - e*Ei(-1)-1)/(e^(x/(x-1))*(x-1)), where Ei is the exponential integral function. - Jean-François Alcover, Sep 05 2015, after Fishburn et al.
0 = a(n)*(-24*a(n+2) + 99*a(n+3) - 78*a(n+4) + 17*a(n+5) - a(n+6)) + a(n+1)*(-15*a(n+2) + 84*a(n+3) - 51*a(n+4) + 6*a(n+5)) + a(n+2)*(-6*a(n+2) + 34*a(n+3) - 15*a(n+4)) + a(n+3)*(+10*a(n+3)) for all n in Z. - Michael Somos, Dec 02 2016
EXAMPLE
G.f. = 1 + x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 626*x^6 + 5387*x^7 + ...
MAPLE
A005189 :=proc(n) option remember;
if n <= 2 then 1 else 2*(n-1)*procname(n-1)-(n-2)^2*procname(n-2); fi; end;
[seq(A005189(n), n=0..20)]; # N. J. A. Sloane, Jul 10 2015
MATHEMATICA
$Assumptions = Element[x, Reals]; F[x_] := (E*ExpIntegralEi[1/(x-1)] - E*ExpIntegralEi[-1]-1)/(E^(x/(x-1))*(x-1)); Join[{1}, CoefficientList[ Normal[Series[F[x], {x, 0, 18}]], x]*Range[0, 18]!] (* Jean-François Alcover, Sep 05 2015 *)
PROG
(PARI) {a(n) = if(n<3, n>=0, 2*(n-1)*a(n-1) - (n-2)^2*a(n-2))}; /* Michael Somos, Dec 02 2016 */
CROSSREFS
Sequence in context: A263187 A213628 A088716 * A331608 A331615 A317060
KEYWORD
nonn
EXTENSIONS
More terms from Vladeta Jovovic, Sep 05 2005
STATUS
approved