login
A005142
Number of connected bipartite graphs with n nodes.
(Formerly M2501)
33
1, 1, 1, 1, 3, 5, 17, 44, 182, 730, 4032, 25598, 212780, 2241730, 31193324, 575252112, 14218209962, 472740425319, 21208887576786, 1286099113807999, 105567921675718772, 11743905783670560579, 1772771666309380358809, 363526952035325887859823, 101386021137641794979558045
OFFSET
0,5
COMMENTS
Also, the number of unlabeled connected bicolored graphs having n nodes; the color classes may be interchanged. - Robert W. Robinson
Also, for n>1, number of connected triangle-free graphs on n nodes with chromatic number 2. - Keith M. Briggs, Mar 21 2006 (cf. A116079).
Also, first diagonal of triangle in A126736.
EULER transform of [1, 1, 1, 3, 5, 17, ...] is A033995 [1, 2, 3, 7, 13, ...]. - Michael Somos, May 13 2019
REFERENCES
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Jean-François Alcover, Mathematica program
CombOS - Combinatorial Object Server, Generate graphs
P. Hanlon, The enumeration of bipartite graphs, Discrete Math. 28 (1979), 49-57.
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Eric Weisstein's World of Mathematics, Bipartite Graph.
Eric Weisstein's World of Mathematics, n-Chromatic Graph
Eric Weisstein's World of Mathematics, n-Colorable Graph
Jonathan Wurtz and Danylo Lykov, The fixed angle conjecture for QAOA on regular MaxCut graphs, arXiv:2107.00677 [quant-ph], 2021.
FORMULA
a(2*n+1) = A318870(2*n+1)/2, a(2*n) = (a(n) + A318869(n) + A318870(2*n) - A318870(n))/2. - Andrew Howroyd, Sep 04 2018
MATHEMATICA
(* See the links section. *)
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
More terms from Ronald C. Read.
a(0)=1 prepended by Max Alekseyev, Jun 24 2013
Terms a(21) and beyond from Andrew Howroyd, Sep 04 2018
STATUS
approved