login
A001572
Related to series-parallel networks.
(Formerly M2500 N0989)
2
1, 1, 1, 1, 3, 5, 17, 41, 127, 365, 1119, 3413, 10685, 33561, 106827, 342129, 1104347, 3584649, 11701369, 38374065, 126395259, 417908329, 1386618307, 4615388353, 15407188529, 51569669429, 173033992311, 581905285089, 1961034571967
OFFSET
0,5
COMMENTS
From Gary W. Adamson, Sep 27 2008: (Start)
Starting (1, 1, 1, 3, 5, 17, ...) = the INVERTi transform of A000084: (1, 2, 4, 10, 24, 66, ...).
Equals left border of triangle A144962. (End)
REFERENCES
J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks, J. Math. Phys., 21 (1942), 83-93. Reprinted in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 560-570.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks (annotated scanned copy)
FORMULA
G.f.: 1 - Sum_{k>=1} a(k)*x^k = Product_{n>=1} (1-x^n)^A000669(n).
MATHEMATICA
max = 29; (* b = A000669 *) b[1] = 1; b[n_] := Module[{s}, s = Series[1/(1 - x), {x, 0, n}]; Do[s = Series[s/(1 - x^k)^Coefficient[s, x^k], {x, 0, n}], {k, 2, n}]; Coefficient[s, x^n]/2]; gf = 2 - Product[(1 - x^n)^b[n], {n, 1, max}] + O[x]^max; CoefficientList[gf, x] (* Jean-François Alcover, Oct 23 2016 *)
CROSSREFS
Cf. A000084, A144962. - Gary W. Adamson, Sep 27 2008
Sequence in context: A336380 A113275 A280080 * A236458 A131342 A005142
KEYWORD
nonn,easy
STATUS
approved