login
A005089
Number of distinct primes == 1 (mod 4) dividing n.
10
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1
OFFSET
1,65
LINKS
Étienne Fouvry and Peter Koymans, On Dirichlet biquadratic fields, arXiv:2001.05350 [math.NT], 2020.
FORMULA
Additive with a(p^e) = 1 if p == 1 (mod 4), 0 otherwise.
From Reinhard Zumkeller, Jan 07 2013: (Start)
a(n) = Sum_{k=1..A001221(n)} A079260(A027748(n,k)).
a(A004144(n)) = 0.
a(A009003(n)) > 0. (End)
MAPLE
A005089 := proc(n)
local a, pe;
a := 0 ;
for pe in ifactors(n)[2] do
if modp(op(1, pe), 4) =1 then
a := a+1 ;
end if;
end do:
a ;
end proc:
seq(A005089(n), n=1..100) ; # R. J. Mathar, Jul 22 2021
MATHEMATICA
f[n_]:=Length@Select[If[n==1, {}, FactorInteger[n]], Mod[#[[1]], 4]==1&]; Table[f[n], {n, 102}] (* Ray Chandler, Dec 18 2011 *)
a[n_] := DivisorSum[n, Boole[PrimeQ[#] && Mod[#, 4] == 1]&]; Array[a, 100] (* Jean-François Alcover, Dec 01 2015 *)
PROG
(PARI) for(n=1, 100, print1(sumdiv(n, d, isprime(d)*if((d-1)%4, 0, 1)), ", "))
(Haskell)
a005089 = sum . map a079260 . a027748_row
-- Reinhard Zumkeller, Jan 07 2013
(Magma) [#[p:p in PrimeDivisors(n)|p mod 4 eq 1]: n in [1..100]]; // Marius A. Burtea, Jan 16 2020
CROSSREFS
KEYWORD
nonn
STATUS
approved