OFFSET
0,3
COMMENTS
In other words, a(n) is the number of graphic sequences of length n, where a graphic sequence is a sequence of numbers which can be the degree sequence of some graph.
In the article by A. Iványi, G. Gombos, L. Lucz, and T. Matuszka, "Parallel enumeration of degree sequences of simple graphs II", in Table 4 on page 260 the values a(30) = 7898574056034638 and a(31) = 30873429530206738 are incorrect due to the incorrect Gz(30) = 5876236938019300 and Gz(31) = 22974847474172100. - Wang Kai, Jun 05 2016
REFERENCES
R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978).
LINKS
Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, and Alex Scott, Table of n, a(n) for n = 0..1651 (Terms 1 through 31 were computed by various authors; terms 32 through 34 by Axel Kohnert and Wang Kai; terms 35 to 79 by Wang Kai)
Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, and Alex Scott, Counting graphic sequences via integrated random walks, arXiv:2301.07022 [math.CO], 2023.
T. M. Barnes and C. D. Savage, A recurrence for counting graphical partitions, Electronic J. Combinatorics, 2 (1995), #R11.
B. A. Chat, S. Pirzada, and A. Iványi, Recognition of split-graphic sequences, Acta Universitatis Sapientiae, Informatica, 6, 2 (2014) 252-286.
D. Dimitrov, Efficient computation of trees with minimal atom-bond connectivity index, arXiv:1305.1155 [cs.DM], 2013.
A. Iványi, L. Lucz, T. F. Móri and P. Sótér, On Erdős-Gallai and Havel-Hakimi algorithms, Acta Univ. Sapientiae, Inform. 3(2) (2011), 230-268.
A. Ivanyi, L. Lucz, T. Matuszka, and S. Pirzada, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapientiae, Informatica, 4, 2 (2012), 260-288. - From N. J. A. Sloane, Feb 15 2013
A. Ivanyi and J. E. Schoenfield, Deciding football sequences, Acta Univ. Sapientiae, Informatica, 4, 1 (2012), 130-183. - From N. J. A. Sloane, Dec 22 2012 [Disclaimer: I am not one of the authors of this paper; I was unpleasantly surprised to find my name on it, as explained here. - Jon E. Schoenfield, Nov 26 2016]
Wang Kai, Efficient Counting of Degree Sequences, arXiv:1604.04148 [math.CO], 2016. Gives 79 terms.
P. W. Mills, R. P. Rundle, V. M. Dwyer, T. Tilma, and S. J. Devitt, A proposal for an efficient quantum algorithm solving the graph isomorphism problem, arXiv 1711.09842, 2017.
P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978). [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Degree Sequence.
Eric Weisstein's World of Mathematics, Graphic Sequence.
FORMULA
G.f. = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 31*x^5 + 102*x^6 + 342*x^7 + 1213*x^8 + ...
a(n) ~ c * 4^n / n^(3/4) for some constant c > 0. Computational estimates suggest c ≈ 0.099094. - Tom Johnston, Jan 18 2023
EXAMPLE
For n = 3, there are 4 different graphic sequences possible: 0 0 0; 1 1 0; 2 1 1; 2 2 2. - Daan van Berkel (daan.v.berkel.1980(AT)gmail.com), Jun 25 2010
From Gus Wiseman, Dec 31 2020: (Start)
The a(0) = 1 through a(4) = 11 sorted degree sequences:
() (0) (0,0) (0,0,0) (0,0,0,0)
(1,1) (0,1,1) (0,0,1,1)
(1,1,2) (0,1,1,2)
(2,2,2) (0,2,2,2)
(1,1,1,1)
(1,1,1,3)
(1,1,2,2)
(1,2,2,3)
(2,2,2,2)
(2,2,3,3)
(3,3,3,3)
For example, the graph {{2,3},{2,4}} has degrees (0,2,1,1), so (0,1,1,2) is counted under a(4).
(End)
MATHEMATICA
Table[Length[Union[Sort[Table[Count[Join@@#, i], {i, n}]]&/@Subsets[Subsets[Range[n], {2}]]]], {n, 0, 5}] (* Gus Wiseman, Dec 31 2020 *)
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from Torsten Sillke, torsten.sillke(AT)lhsystems.com, using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.
a(19) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 19 2007
a(20)-a(23) from Nathann Cohen, Jul 09 2011
a(24)-a(29) from Antal Iványi, Nov 15 2011
a(30) and a(31) corrected by Wang Kai, Jun 05 2016
STATUS
approved