login
A004094
Powers of 2 written backwards.
31
1, 2, 4, 8, 61, 23, 46, 821, 652, 215, 4201, 8402, 6904, 2918, 48361, 86723, 63556, 270131, 441262, 882425, 6758401, 2517902, 4034914, 8068838, 61277761, 23445533, 46880176, 827712431, 654534862, 219078635, 4281473701, 8463847412
OFFSET
0,2
COMMENTS
Freeman Dyson believes that A014963(a(n)) <> 5 is true but cannot be proved, see link. - Reinhard Zumkeller, Jan 05 2005
LINKS
Edge Foundation, Annual Question 2005
Richard Lipton, More on testing Dyson's conjecture (2014)
N. J. A. Sloane, Exciting Number Sequences (video of talk), Mar 05 2021.
FORMULA
a(n) = A004086(A000079(n)). - Reinhard Zumkeller, Apr 02 2014
MAPLE
a:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||(2^n)):
seq(a(n), n=0..50); # Alois P. Heinz, Jan 21 2020
MATHEMATICA
Table[FromDigits[Reverse[IntegerDigits[2^n]]], {n, 0, 35}] (* Vincenzo Librandi, Jan 22 2020 *)
PROG
(Haskell)
a004094 = a004086 . a000079 -- Reinhard Zumkeller, Apr 02 2014
(PARI) rev(n)=subst(Polrev(digits(n)), 'x, 10)
a(n)=rev(2^n) \\ Charles R Greathouse IV, Oct 20 2014
(PARI) apply( {A004094(n)=fromdigits(Vecrev(digits(2^n)))}, [0..44]) \\ M. F. Hasler, Feb 18 2021
(Magma) [Seqint(Reverse(Intseq(2^n))): n in [0..35]]; // Vincenzo Librandi, Jan 22 2020
(Python)
def A004094(n):
return int(str(2**n)[::-1]) # Chai Wah Wu, Feb 19 2021
CROSSREFS
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
Cf. A004086 (read n backwards).
For indices of primes see A057708.
Sequence in context: A206850 A094333 A018473 * A028910 A018482 A036447
KEYWORD
nonn,base,easy
EXTENSIONS
More terms from Reinhard Zumkeller, Jan 05 2005
STATUS
approved