Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jun 23 2020 09:42:40
%S 1,11,81,666,5431,44466,364061,2981201,24412606,199912706,1637069691,
%T 13405842666,109779463516,898976005896,7361648869421,60284005131851,
%U 493661316969811,4042556485091321,33104199931650186
%N Number of 2-factors in C_5 X P_n.
%D F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
%H Vincenzo Librandi, <a href="/A003730/b003730.txt">Table of n, a(n) for n = 1..1000</a>
%H F. Faase, <a href="http://www.iwriteiam.nl/Cpaper.zip">On the number of specific spanning subgraphs of the graphs G X P_n</a>, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
%H F. Faase, <a href="http://www.iwriteiam.nl/counting.html">Counting Hamiltonian cycles in product graphs</a>
%H F. Faase, <a href="http://www.iwriteiam.nl/Cresults.html">Results from the counting program</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (9,-4,-22,3).
%F a(n) = 9a(n-1) - 4a(n-2) - 22a(n-3) + 3a(n-4), n>4.
%F G.f.: -x*(3*x^3-14*x^2+2*x+1)/(3*x^4-22*x^3-4*x^2+9*x-1). - _Colin Barker_, Aug 30 2012
%t CoefficientList[Series[-(3 x^3 - 14 x^2 + 2 x + 1)/(3 x^4 - 22 x^3 - 4 x^2 + 9 x - 1), {x, 0, 40}], x] (* _Vincenzo Librandi_, Oct 13 2013 *)
%t LinearRecurrence[{9,-4,-22,3},{1,11,81,666},30] (* _Harvey P. Dale_, Sep 23 2016 *)
%o (PARI) a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 3,-22,-4,9]^(n-1)*[1;11;81;666])[1,1] \\ _Charles R Greathouse IV_, Jun 23 2020
%K nonn,easy
%O 1,2
%A _Frans J. Faase_