login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003730
Number of 2-factors in C_5 X P_n.
1
1, 11, 81, 666, 5431, 44466, 364061, 2981201, 24412606, 199912706, 1637069691, 13405842666, 109779463516, 898976005896, 7361648869421, 60284005131851, 493661316969811, 4042556485091321, 33104199931650186
OFFSET
1,2
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
FORMULA
a(n) = 9a(n-1) - 4a(n-2) - 22a(n-3) + 3a(n-4), n>4.
G.f.: -x*(3*x^3-14*x^2+2*x+1)/(3*x^4-22*x^3-4*x^2+9*x-1). - Colin Barker, Aug 30 2012
MATHEMATICA
CoefficientList[Series[-(3 x^3 - 14 x^2 + 2 x + 1)/(3 x^4 - 22 x^3 - 4 x^2 + 9 x - 1), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 13 2013 *)
LinearRecurrence[{9, -4, -22, 3}, {1, 11, 81, 666}, 30] (* Harvey P. Dale, Sep 23 2016 *)
PROG
(PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; 3, -22, -4, 9]^(n-1)*[1; 11; 81; 666])[1, 1] \\ Charles R Greathouse IV, Jun 23 2020
CROSSREFS
Sequence in context: A227556 A181989 A199557 * A334340 A335332 A111334
KEYWORD
nonn,easy
STATUS
approved