OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2000 (first 251 terms from R. H. Hardin)
S. Avgustinovich and S. Kitaev, On uniquely k-determined permutations, Discr. Math., 308 (2008), 1500-1507.
Hugh Denoncourt, Ordinal pattern probabilities for symmetric random walks, arXiv:1907.07172 [math.CO], 2019.
E. S. Page, Systematic generation of ordered sequences using recurrence relations, Computer J., 14 (1971), 150-153.
E. S. Page, Systematic generation of ordered sequences using recurrence relations, The Computer Journal 14 (1971), 150-153. (Annotated scanned copy)
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Index entries for linear recurrences with constant coefficients, signature (3, -3, 2, -2, 1).
FORMULA
For n > 1, a(n) = 2*A069241(n).
G.f.: -(x^6 - x^5 + x^3 + 2*x^2 - 2*x + 1)/((x^3 + x - 1)*(x-1)^2).
MAPLE
A003274:=-(1-z+3*z**2-2*z**3+z**5)/(z**3+z-1)/(z-1)**2; # [Conjectured by Simon Plouffe in his 1992 dissertation.]
MATHEMATICA
CoefficientList[Series[-(x^6 - x^5 + x^3 + 2 x^2 - 2 x + 1)/((x^3 + x - 1) (x - 1)^2), {x, 0, 39}], x] (* Michael De Vlieger, Oct 01 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Better description and g.f. from Erich Friedman
a(0)=1 prepended and g.f. adapted by Alois P. Heinz, Apr 01 2018
STATUS
approved