login
A002703
Sets with a congruence property.
(Formerly M1598 N0624)
14
0, 0, 0, 2, 6, 14, 24, 46, 88, 162, 300, 562, 1056, 1982, 3742, 7082, 13438, 25574, 48768, 93198, 178480, 342392, 657918, 1266202, 2440318, 4709374, 9099504, 17602322, 34087010, 66076414, 128207976, 248983550, 483939976, 941362694, 1832519262, 3569842946, 6958934352
OFFSET
3,4
COMMENTS
a(n) is the sequence k(n) in Table 3 of the first 1965 paper. - N. J. A. Sloane, Oct 20 2015
See English summary at the end of the first 1965 paper, which is repeated in the Zentralblatt review. - Jonathan Sondow, Nov 02 2013
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alexander Rosa and Štefan Znám, A combinatorial problem in the theory of congruences (Russian with English summary), Mat.-Fys. Casopis Sloven. Akad. Vied 15 (1965) 49-59. [Annotated scanned copy.] This is the sequence k(n) in Table 3. Tables 1 and 2 are A053632 and A178666 respectively.
Alexander Rosa and Štefan Znám, A remark on a combinatorial problem (Russian with English summary), Mat.-Fyz. Casopis Sloven. Akad. Vied 15 (1965) 313-316. [Annotated scanned copy]
MAPLE
A002703 := proc(n)
A262568(n)-2 ;
end proc: # R. J. Mathar, Oct 21 2015
MATHEMATICA
A178666[r_, s_] := SeriesCoefficient[Product[ (1 + x^(2i+1)), {i, 0, Floor[(s-1)/2]}], {x, 0, r}];
kstart[n_, m_] := Ceiling[Binomial[n+1, 2]/m];
kend[n_, m_] := Floor[Binomial[3n+1, 2]/3/m];
A262568[n_] := Module[{s = 2n-1, m = 2n+1, Q=0, vi, k}, For[k = kstart[n, m], k <= kend[n, m], k++, vi = m k - Binomial[n+1, 2]; Q += A178666[vi, s] ]; Q];
a[n_] := A262568[n] - 2;
a /@ Range[3, 39] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar in A262568 *)
CROSSREFS
See A262567, A262568, A262569 for other versions.
Tables 1 and 2 of the first Rosa-Znám 1965 paper are A053632 and A178666 respectively.
Sequence in context: A238410 A256482 A106353 * A230978 A112853 A176752
KEYWORD
nonn
EXTENSIONS
More terms from R. J. Mathar, Oct 21 2015
STATUS
approved