login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002604
a(n) = n^6 + 1.
6
1, 2, 65, 730, 4097, 15626, 46657, 117650, 262145, 531442, 1000001, 1771562, 2985985, 4826810, 7529537, 11390626, 16777217, 24137570, 34012225, 47045882, 64000001, 85766122, 113379905, 148035890
OFFSET
0,2
COMMENTS
Because of Fermat's little theorem, a(n) is never divisible by 7. - Altug Alkan, Apr 08 2016
FORMULA
G.f. (-1 + 5*x - 72*x^2 - 282*x^3 - 317*x^4 - 51*x^5 - 2*x^6) / (x - 1)^7. - R. J. Mathar, Aug 06 2012
Sum_{n>=0} 1/a(n) = 1/2 + Pi * (coth(Pi) + (sinh(Pi) + sqrt(3)*sin(sqrt(3)*Pi)) / (cosh(Pi) - cos(sqrt(3)*Pi))) / 6 = 1.5171007340332164261529... . - Vaclav Kotesovec, Feb 14 2015
Sum_{n>=0} (-1)^n/a(n) = 1/2 + Pi/(6*sinh(Pi)) + Pi * (sqrt(3)*cosh(Pi/2) * sin((sqrt(3)*Pi)/2) + cos((sqrt(3)*Pi)/2) * sinh(Pi/2)) / (3*(cosh(Pi) - cos(sqrt(3)*Pi))) = 0.514210347292695053493... . - Vaclav Kotesovec, Feb 14 2015
MATHEMATICA
Table[n^6+1, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 2, 65, 730, 4097, 15626, 46657}, 30] (* Harvey P. Dale, Jul 28 2021 *)
PROG
(PARI) a(n)=n^6+1
(Magma) [n^6 + 1: n in [0..50]]; // Vincenzo Librandi, May 02 2011
CROSSREFS
Equals A001014 + 1. Cf. A024004, A002522.
Sequence in context: A156651 A342608 A294179 * A294273 A199145 A198665
KEYWORD
nonn,easy
STATUS
approved