login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002603
A generalized partition function.
(Formerly M4971 N2134)
1
1, 15, 73, 143, 208, 244, 265, 273, 282, 490, 838, 1426, 2367, 3908, 6356, 10246, 16327, 25812, 40379, 62748, 96660, 147833, 224446, 338584, 507293, 755612, 1118679, 1647023, 2411642, 3513096, 5091511, 7344086, 10543419, 15068833, 21442703, 30385111, 42880601
OFFSET
1,2
REFERENCES
Hansraj Gupta, A generalization of the partition function. Proc. Nat. Inst. Sci. India 17 (1951), 231-238.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Hansraj Gupta, A generalization of the partition function, Proc. Nat. Inst. Sci. India 17 (1951), 231-238. [Annotated scanned copy]
MAPLE
J:= m-> product((1-x^j)^(-j), j=1..m): a:= t-> coeff(series(J(min(9, t)), x, 1+max(9, t)), x, max(9, t)): seq(a(n), n=1..40); # Alois P. Heinz, Jul 20 2009
MATHEMATICA
J[m_] := Product[(1-x^j)^-j, {j, 1, m}]; a[t_] := SeriesCoefficient[J[Min[9, t]], {x, 0, Max[9, t]}]; Table[ a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A212098 A053531 A000476 * A212562 A212092 A022817
KEYWORD
nonn
EXTENSIONS
More terms from Alois P. Heinz, Jul 20 2009
STATUS
approved