login
A001755
Lah numbers: a(n) = n! * binomial(n-1, 3)/4!.
(Formerly M5096 N2207)
8
1, 20, 300, 4200, 58800, 846720, 12700800, 199584000, 3293136000, 57081024000, 1038874636800, 19833061248000, 396661224960000, 8299373322240000, 181400588328960000, 4135933413900288000, 98228418580131840000, 2426819753156198400000, 62288373664342425600000
OFFSET
4,2
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
E.g.f.: ((x/(1-x))^4)/4!.
If we define f(n,i,x) = Sum_{k=i..n} (Sum_{j=i..k} (binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) ) ) then a(n) = (-1)^n*f(n,4,-4), (n>=4). - Milan Janjic, Mar 01 2009
D-finite with recurrence (-n+4)*a(n) +n*(n-1)*a(n-1)=0. - R. J. Mathar, Jan 06 2021
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=4} 1/a(n) = 12*(Ei(1) - gamma + 2*e) - 80, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=4} (-1)^n/a(n) = 156*(gamma - Ei(-1)) - 96/e - 88, where Ei(-1) = -A099285. (End)
MAPLE
A001755 := n-> n!*binomial(n-1, 3)/4!;
MATHEMATICA
Table[n!Binomial[n-1, 3]/4!, {n, 4, 25}] (* T. D. Noe, Aug 10 2012 *)
PROG
(Sage) [binomial(n, 4)*factorial (n-1)/6 for n in range(4, 21)] # Zerinvary Lajos, Jul 07 2009
(Magma) [Factorial(n-1)*Binomial(n, 4)/6: n in [4..30]]; // G. C. Greubel, May 10 2021
CROSSREFS
Column 4 of A008297.
Column m=4 of unsigned triangle A111596.
Cf. A053495.
Sequence in context: A202270 A053541 A004345 * A361577 A016190 A016188
KEYWORD
nonn,easy
EXTENSIONS
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 12 2001
STATUS
approved