login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generalized Euler numbers.
(Formerly M1715 N0679)
6

%I M1715 N0679 #60 Nov 22 2021 04:03:38

%S 2,6,46,522,7970,152166,3487246,93241002,2849229890,97949265606,

%T 3741386059246,157201459863882,7205584123783010,357802951084619046,

%U 19133892392367261646,1096291279711115037162,67000387673723462963330,4350684698032741048452486,299131045427247559446422446

%N Generalized Euler numbers.

%C These numbers are related to the values at negative integers of the L-functions for two primitive Dirichlet characters of conductor 24. - _F. Chapoton_, Oct 05 2020

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Lars Blomberg, <a href="/A001587/b001587.txt">Table of n, a(n) for n = 0..199</a>

%H LMFDB, <a href="https://www.lmfdb.org/Character/Dirichlet/24/5">character 24.5</a>

%H LMFDB, <a href="https://www.lmfdb.org/Character/Dirichlet/24/11">character 24.11</a>

%H D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-1967-0223295-5">Generalized Euler and class numbers</a>, Math. Comp. 21 (1967) 689-694.

%H D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-68-99652-X">Corrigendum: Generalized Euler and class numbers</a>, Math. Comp. 22, (1968) 699.

%H D. Shanks, <a href="/A000003/a000003.pdf">Generalized Euler and class numbers</a>, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]

%F E.g.f.: 2 (sin(3 x) + cos(3 x)) / (2 cos(4 x) - 1). - _F. Chapoton_, Oct 06 2020

%F a(n) ~ 2^(2*n + 2) * 3^(n + 1/2) * n^(n + 1/2) / (exp(n) * Pi^(n + 1/2)). - _Vaclav Kotesovec_, Nov 05 2021

%F a(n) = n!*[x^n](sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x))). - _Peter Luschny_, Nov 21 2021

%p egf := sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)): ser := series(egf, x, 20): seq(n!*coeff(ser, x, n), n = 0..17); # _Peter Luschny_, Nov 21 2021

%o (Sage)

%o t = PowerSeriesRing(QQ, 't').gen()

%o f = 2 * (sin(3 * t) + cos(3 * t)) / (2 * cos(4 * t) - 1)

%o f.egf_to_ogf().list() # _F. Chapoton_, Oct 06 2020

%Y Bisections are A000192 and A000411. Overview in A349264.

%Y Similar sequences: A000111, A225147.

%K nonn

%O 0,1

%A _N. J. A. Sloane_

%E a(11)-a(14) from _Lars Blomberg_, Sep 10 2015