OFFSET
0,1
COMMENTS
These numbers are related to the values at negative integers of the L-functions for two primitive Dirichlet characters of conductor 24. - F. Chapoton, Oct 05 2020
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Lars Blomberg, Table of n, a(n) for n = 0..199
LMFDB, character 24.5
LMFDB, character 24.11
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967) 689-694.
D. Shanks, Corrigendum: Generalized Euler and class numbers, Math. Comp. 22, (1968) 699.
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
FORMULA
E.g.f.: 2 (sin(3 x) + cos(3 x)) / (2 cos(4 x) - 1). - F. Chapoton, Oct 06 2020
a(n) ~ 2^(2*n + 2) * 3^(n + 1/2) * n^(n + 1/2) / (exp(n) * Pi^(n + 1/2)). - Vaclav Kotesovec, Nov 05 2021
a(n) = n!*[x^n](sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x))). - Peter Luschny, Nov 21 2021
MAPLE
egf := sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)): ser := series(egf, x, 20): seq(n!*coeff(ser, x, n), n = 0..17); # Peter Luschny, Nov 21 2021
PROG
(Sage)
t = PowerSeriesRing(QQ, 't').gen()
f = 2 * (sin(3 * t) + cos(3 * t)) / (2 * cos(4 * t) - 1)
f.egf_to_ogf().list() # F. Chapoton, Oct 06 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(11)-a(14) from Lars Blomberg, Sep 10 2015
STATUS
approved