login
A001550
a(n) = 1^n + 2^n + 3^n.
(Formerly M2580 N1020)
101
3, 6, 14, 36, 98, 276, 794, 2316, 6818, 20196, 60074, 179196, 535538, 1602516, 4799354, 14381676, 43112258, 129271236, 387682634, 1162785756, 3487832978, 10462450356, 31385253914, 94151567436, 282446313698, 847322163876
OFFSET
0,1
COMMENTS
a(n)*(-1)^n, n>=0, gives the z-sequence for the Sheffer triangle A049458 ((signed) 3-restricted Stirling1 numbers), which is the inverse triangle of A143495 with offset [0,0] (3-restricted Stirling2 numbers). See the W. Lang link under A006232 for a- and z-sequences for Sheffer matrices. The a-sequence for each (signed) r-restricted Stirling1 Sheffer triangle is A027641/A027642 (Bernoulli numbers). - Wolfdieter Lang, Oct 10 2011
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
C. J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Kai Wang, Girard-Waring Type Formula For A Generalized Fibonacci Sequence, Fibonacci Quarterly (2020) Vol. 58, No. 5, 229-235.
FORMULA
From Michael Somos: (Start)
G.f.: (3 -12*x +11*x^2)/(1 -6*x +11*x^2 -6*x^3).
a(n) = 5*a(n-1) - 6*a(n-2) + 2. (End)
E.g.f.: exp(x) + exp(2*x) + exp(3*x). - Mohammad K. Azarian, Dec 26 2008
a(0)=3, a(1)=6, a(2)=14, a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3). - Harvey P. Dale, Apr 30 2011
a(n) = A007689(n) + 1. - Reinhard Zumkeller, Mar 01 2012
From Kai Wang, May 18 2020: (Start)
a(n) = 3*A000392(n+3) - 12*A000392(n+2) + 11*A000392(n+1).
A000392(n) = (3*a(n+1) - 12*a(n) + 10*a(n-1))/2. (End)
MAPLE
A001550:=-(3-12*z+11*z^2)/(z-1)/(3*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation.
MATHEMATICA
Table[1^n + 2^n + 3^n, {n, 0, 30}]
CoefficientList[Series[(3-12x+11x^2)/(1-6x+11x^2-6x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{6, -11, 6}, {3, 6, 14}, 31] (* Harvey P. Dale, Apr 30 2011 *)
Total[Range[3]^#]&/@Range[0, 30] (* Harvey P. Dale, Sep 23 2019 *)
PROG
(PARI) a(n)=1+2^n+3^n \\ Charles R Greathouse IV, Jun 10 2011
(Haskell) a001550 n = sum $ map (^ n) [1..3] -- Reinhard Zumkeller, Mar 01 2012
(Magma) [1^n + 2^n + 3^n : n in [0..30]]; // Wesley Ivan Hurt, Jun 25 2020
(Python)
def A001550(n): return 3**n+(1<<n)+1 # Chai Wah Wu, Nov 01 2024
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
Additional terms from Michael Somos
Attribute "conjectured" removed from Simon Plouffe's g.f. by R. J. Mathar, Mar 11 2009
STATUS
approved