login
A001344
a(n) = Sum_{k=0..2} (n+k)! * C(2,k).
(Formerly M1405 N0548)
5
2, 5, 11, 38, 174, 984, 6600, 51120, 448560, 4394880, 47537280, 562464000, 7224940800, 100111334400, 1488257971200, 23625316915200, 398840682240000, 7134671351808000, 134805535248384000, 2682594582700032000, 56078391288471552000, 1228615514129203200000
OFFSET
-1,1
COMMENTS
If we discard the first two terms and set a(0) = 11 then a(n) = (n+1)!*(n^2+7*n+11). - Gary Detlefs, Aug 11 2010
For nonnegative n, a(n) equals the permanent of the (n+2) X (n+2) matrix with a 2 in the upper right corner, a 2 in the lower left corner, and 1's everywhere else. - John M. Campbell, May 25 2011
In factorial base representation (A007623) the terms of this sequence look as: 10, 21, 121, 1210, 12100, 121000, ... From a(1)=11 onward each term begins always with "121", which is then followed by n-1 zeros. - Antti Karttunen, Sep 23 2016
a(n-2), for n > 1, is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly n-2 of the remaining n-1 chords contain the marked chord, see [Young]. - Donovan Young, Aug 11 2020
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
a(-1) = 2, for n >= 0, a(n) = A028387(1+n) * n! - Antti Karttunen, Sep 23 2016
MATHEMATICA
Join[{2}, Table[Sum[(n + k)! Binomial[2, k], {k, 0, 2}], {n, 0, 20}]] (* T. D. Noe, Jun 28 2012 *)
PROG
(Scheme) (define (A001344 n) (cond ((= -1 n) 2) (else (* (A028387 (+ 1 n)) (A000142 n))))) ;; Antti Karttunen, Sep 23 2016
CROSSREFS
From a(1) = 11 onward row 2 of A276588, row 8 of A276955.
Sequence in context: A195985 A367969 A056301 * A056302 A276547 A065850
KEYWORD
nonn,easy
STATUS
approved