OFFSET
0,1
COMMENTS
Rows have irregular lengths.
The length of row n is A054992(n).
REFERENCES
J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
LINKS
Max Alekseyev, Rows n = 0..1122, flattened (rows 0..500 from T. D. Noe)
J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
S. S. Wagstaff, Jr., The Cunningham Project
EXAMPLE
Triangle begins:
2;
3;
5;
3,3,17;
3,11;
5,13;
3,43;
257;
...
MATHEMATICA
repeat[{p_, e_}] := Table[p, {e}]; row[n_] := repeat /@ FactorInteger[2^n + 1] // Flatten; Table[row[n], {n, 0, 25}] // Flatten (* Jean-François Alcover, Jul 13 2012 *)
PROG
(PARI) apply( A001269_row(n)=concat(apply(f->vector(f[2], i, f[1]), Col(factor(2^n+1))~)), [0..19]) \\ M. F. Hasler, Nov 19 2018
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved