OFFSET
0,2
COMMENTS
It appears that the (unsigned) sequence is identical to its 5th-order absolute difference. - John W. Layman, Sep 23 2003
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..3000
H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
Index entries for linear recurrences with constant coefficients, signature (-5, -10, -10, -5).
FORMULA
G.f.: 1/((1+x)^5-x^5).
a(n) = (-1)^n * Sum_{k=0..floor(n/5)} (-1)^k * binomial(n+4,5*k+4). - Seiichi Manyama, Mar 21 2019
MATHEMATICA
LinearRecurrence[{-5, -10, -10, -5}, {1, -5, 15, -35}, 30] (* Jean-François Alcover, Feb 11 2016 *)
PROG
(PARI) Vec(1/((1+x)^5-x^5) + O(x^40)) \\ Michel Marcus, Feb 11 2016
(PARI) {a(n) = (-1)^n*sum(k=0, n\5, (-1)^k*binomial(n+4, 5*k+4))} \\ Seiichi Manyama, Mar 21 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
STATUS
approved