OFFSET
0,3
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..400
Peter Luschny, An old operation on sequences: the Seidel transform.
J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54 (Abstract, pdf, ps).
J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54.
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
N. J. A. Sloane, Transforms.
Wikipedia, Boustrophedon transform.
FORMULA
E.g.f.: (2/sqrt(5)) * exp(x/2) * sinh((sqrt(5)/2)*x) * (sin(x)+1) / cos(x). - Alois P. Heinz, Feb 08 2011
a(n) ~ 4*(exp(sqrt(5)*Pi/2)-1) * (2*n/Pi)^(n+1/2) * exp(Pi/4-n-sqrt(5)*Pi/4) / sqrt(5). - Vaclav Kotesovec, Oct 05 2013
MAPLE
read(transforms);
with(combinat):
F:=fibonacci;
[seq(F(n), n=0..50)];
BOUS2(%);
MATHEMATICA
FullSimplify[CoefficientList[Series[(2/Sqrt[5]) * E^(x/2) * (E^(Sqrt[5]/2*x)/2 - E^(-Sqrt[5]/2*x)/2) * (Sin[x]+1) / Cos[x], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec after Alois P. Heinz, Oct 05 2013 *)
t[n_, 0] := Fibonacci[n]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
PROG
(Haskell)
a000738 n = sum $ zipWith (*) (a109449_row n) a000045_list
-- Reinhard Zumkeller, Nov 03 2013
(Python)
from itertools import islice, accumulate
def A000738_gen(): # generator of terms
blist, a, b = tuple(), 0, 1
while True:
yield (blist := tuple(accumulate(reversed(blist), initial=a)))[-1]
a, b = b, a+b
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Entry revised by N. J. A. Sloane, Mar 16 2011
STATUS
approved