login
A000422
Concatenation of numbers from n down to 1.
68
1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, 987654321, 10987654321, 1110987654321, 121110987654321, 13121110987654321, 1413121110987654321, 151413121110987654321, 16151413121110987654321, 1716151413121110987654321, 181716151413121110987654321
OFFSET
1,2
COMMENTS
The first prime term in this sequence is a(82) (see A176024). - Artur Jasinski, Mar 30 2008
For n < 10^4, a(n)/A000217(n) is an integer for n = 1, 2, and 18. The integers are 1, 7 (prime), and 1062667552123515268933651, respectively. - Derek Orr, Sep 04 2014
REFERENCES
F. Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ
FORMULA
a(n+1) = (n+1)*10^len(a(n)) + a(n), where len(k) = number of digits in k.
a(n) = Sum_{k=1..n} k*10^(A058183(k) - (1+floor(log10(k)))). - Alexander Goebel, Mar 07 2020
From Serge Batalov, Dec 08 2021: (Start)
a(n) = ((n*9-1)*10^n+1)/9^2 for n < 10,
a(n) = ((n*99-1)*10^(2*n-19)-89)/99^2*10^10 + (8*10^10+1)/9^2 for 10 <= n < 100,
a(n) = ((n*999-1)*10^(3*n-299)-989)/999^2*10^191 + c2 for 10^2 <= n < 10^3,
a(n) = ((n*9999-1)*10^(4*n-3999)-9989)/9999^2*10^2892 + c3 for 10^3 <= n < 10^4,
a(n) = ((n*99999-1)*10^(5*n-49999)-99989)/99999^2*10^38893 + c4 for 10^4 <= n < 10^5,
a(n) = ((n*999999-1)*10^(6*n-599999)-999989)/999999^2*10^488894 + c5 for 10^5 <= n < 10^6,
where
c2 = (98*10^191 + 879*10^10 + 121)/99^2 = a(99),
c3 = (998*10^2701 - 989)/999^2*10^191 + c2 = a(999),
c4 = (9998*10^36001 - 9989)/9999^2*10^2892 + c3 = a(9999),
c5 = (99998*10^450001 - 99989)/99999^2*10^38893 + c4 = a(99999).
(End)
MAPLE
a[1]:= 1:
for n from 2 to 100 do
a[n]:= n*10^(1+ilog10(a[n-1])) + a[n-1]
od:
seq(a[n], n=1..100); # Robert Israel, Sep 05 2014
# second Maple program:
a:= proc(n) a(n):= `if`(n=1, 1, parse(cat(n, a(n-1)))) end:
seq(a(n), n=1..22); # Alois P. Heinz, Jan 12 2021
MATHEMATICA
b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[PrependTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}]; p = FromDigits[a]; AppendTo[b, p], {n, 1, 30}]; b (* Artur Jasinski, Mar 30 2008 *)
Table[FromDigits[Flatten[IntegerDigits/@Range[n, 1, -1]]], {n, 20}] (* Harvey P. Dale, Jul 06 2019 *)
PROG
(PARI) a(n)=my(t=n); forstep(k=n-1, 1, -1, t=t*10^#Str(k)+k); t \\ Charles R Greathouse IV, Jul 15 2011
(PARI) A000422(n, p=1, L=1)=sum(k=1, n, k*p*=L+(k==L&&!L*=10)) \\ M. F. Hasler, Nov 02 2016
(Python)
def a(n): return int("".join(map(str, range(n, 0, -1))))
print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Dec 08 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
R. Muller
EXTENSIONS
Edited by N. J. A. Sloane, Dec 03 2021
STATUS
approved