login
A000320
Generalized tangent numbers d(5,n).
(Formerly M3722 N1521)
7
4, 272, 55744, 23750912, 17328937984, 19313964388352, 30527905292468224, 64955605537174126592, 179013508069217017790464, 620314831396713435870789632, 2639743384489464189324523208704, 13533573366345611477262311433961472, 82274260343572247169162187576069586944
OFFSET
1,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967) 689-694.
D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
FORMULA
a(n) = (2*n-1)!*[x^(2*n-1)](sec(5*x)*(sin(x) + sin(3*x))). - Peter Luschny, Nov 21 2021
MAPLE
egf := sec(5*x)*(sin(x) + sin(3*x)): ser := series(egf, x, 26):
seq((2*n-1)!*coeff(ser, x, 2*n-1), n = 1..13); # Peter Luschny, Nov 21 2021
MATHEMATICA
nmax = 15; km0 = 10; Clear[dd]; L[a_, s_, km_] := Sum[JacobiSymbol[-a, 2 k + 1]/(2k+1)^s, {k, 0, km}]; d[a_ /; a>1, n_, km_] := (2n-1)! L[-a, 2n, km] (2a/Pi)^(2n)/Sqrt[a] // Round; dd[km_] := dd[km] = Table[d[5, n, km], {n, 1, nmax}]; dd[km0]; dd[km = 2km0]; While[dd[km] != dd[km/2, km = 2 km]]; A000320 = dd[km] (* Jean-François Alcover, Feb 07 2016 *)
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Formula producing A000326, rather than this sequence, deleted by Sean A. Irvine, Sep 09 2010
a(10)-a(13) from Lars Blomberg, Sep 07 2015
STATUS
approved