login
A000199
Coefficient of q^(2n-1) in the series expansion of Ramanujan's mock theta function f(q).
(Formerly M2285 N0904)
5
1, 3, 3, 7, 6, 12, 13, 20, 21, 34, 36, 51, 58, 78, 89, 118, 131, 171, 197, 245, 279, 349, 398, 486, 557, 671, 767, 920, 1046, 1244, 1421, 1667, 1898, 2225, 2525, 2937, 3333, 3856, 4367, 5034, 5683, 6521, 7365, 8409, 9473, 10795, 12133, 13775, 15466
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..5000 (terms 1..1001 from T. D. Noe)
L. A. Dragonette, Some Asymptotic Formulae for the Mock Theta Series of Ramanujan, Trans. Amer. Math. Soc., 72 (1952), 474-500.
Eric Weisstein's World of Mathematics, Mock Theta Function.
FORMULA
a(n) ~ exp(Pi*sqrt(n/3)) / (2*sqrt(2*n)). - Vaclav Kotesovec, Jun 11 2019
MATHEMATICA
f[q_, s_] := Sum[q^(n^2)/Product[1+q^k, {k, n}]^2, {n, 0, s}]; Take[CoefficientList[Series[f[q, 100 ], {q, 0, 100}], q], {2, -1, 2}]
PROG
(PARI) a(n)=if(n<1, 0, polcoeff(1+sum(k=1, sqrtint(2*n-1), x^k^2/prod(i=1, k, 1+x^i, 1+O(x^(2*n-1)))^2), 2*n-1))
CROSSREFS
A000025(2n-1)=a(n). Cf. A000039.
Sequence in context: A078708 A096273 A069981 * A243099 A324877 A359947
KEYWORD
nonn
EXTENSIONS
More terms from Eric W. Weisstein
STATUS
approved