login
A000039
Coefficient of q^(2n) in the series expansion of Ramanujan's mock theta function f(q).
(Formerly M0629 N0230)
7
1, -2, -3, -5, -6, -10, -11, -17, -21, -27, -33, -46, -53, -68, -82, -104, -123, -154, -179, -221, -262, -314, -369, -446, -515, -614, -715, -845, -977, -1148, -1321, -1544, -1778, -2060, -2361, -2736, -3121, -3592, -4097, -4696, -5340, -6105, -6916, -7882, -8919, -10123, -11429, -12952, -14580
OFFSET
0,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..5000 (terms 0..1000 from T. D. Noe)
L. A. Dragonette, Some Asymptotic Formulae for the Mock Theta Series of Ramanujan, Trans. Amer. Math. Soc., 72 (1952), 474-500.
Eric Weisstein's World of Mathematics, Mock Theta Function
FORMULA
a(n) ~ -exp(Pi*sqrt(n/3)) / (2*sqrt(2*n)). - Vaclav Kotesovec, Jun 12 2019
MATHEMATICA
f[q_, s_] := Sum[q^(n^2)/Product[1+q^k, {k, n}]^2, {n, 0, s}]; Take[CoefficientList[Series[f[q, 100], {q, 0, 100}], q], {1, -1, 2}]
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(1+sum(k=1, sqrtint(2*n), x^k^2/prod(i=1, k, 1+x^i, 1+O(x^(2*n)))^2), 2*n))
CROSSREFS
A000025(2n)=a(n). Cf. A000199.
Sequence in context: A130714 A130689 A024560 * A302600 A053436 A057546
KEYWORD
sign
EXTENSIONS
More terms from Eric W. Weisstein
STATUS
approved