Personalizing Discounts you own this product

'); $(document.body).append('
loading reading lists ...
'); function adjustReadingListIcon(isInReadingList){ $readingListToggle.toggleClass("fa-plus", !isInReadingList); $readingListToggle.toggleClass("fa-check", isInReadingList); var tooltipMessage = isInReadingList ? "edit in reading lists" : "add to reading list"; $readingListToggle.attr("title", tooltipMessage); $readingListToggle.attr("data-original-title", tooltipMessage); } $.ajax({ url: "/readingList/isInReadingList", data: { productId: 2156 } }).done(function (data) { adjustReadingListIcon(data && data.hasProductInReadingList); }).catch(function(e){ console.log(e); adjustReadingListIcon(false); }); $readingListToggle.on("click", function(){ if(codePromise == null){ showToast() } loadCode().then(function(store){ store.requestReadingListSpecificationForProduct({ id: window.readingListsServerVars.externalId, manningId: window.readingListsServerVars.productId, title: window.readingListsServerVars.title }); ReadingLists.ReactDOM.render( ReadingLists.React.createElement(ReadingLists.ManningOnlineReadingListModal, { store: store, }), document.getElementById("reading-lists-modal") ); }).catch(function(e){ console.log("Error loading code reading list code"); }); }); var codePromise var readingListStore function loadCode(){ if(codePromise) { return codePromise } return codePromise = new Promise(function (resolve, reject){ $.getScript(window.readingListsServerVars.libraryLocation).done(function(){ hideToast() readingListStore = new ReadingLists.ReadingListStore( new ReadingLists.ReadingListProvider( new ReadingLists.ReadingListWebProvider( ReadingLists.SourceApp.marketplace, getDeploymentType() ) ) ); readingListStore.onReadingListChange(handleChange); readingListStore.onReadingListModalChange(handleChange); resolve(readingListStore); }).catch(function(){ hideToast(); console.log("Error downloading reading lists source"); $readingListToggle.css("display", "none"); reject(); }); }); } function handleChange(){ if(readingListStore != null) { adjustReadingListIcon(readingListStore.isInAtLeastOneReadingList({ id: window.readingListsServerVars.externalId, manningId: window.readingListsServerVars.productId })); } } var $readingListToast = $("#reading-list-toast"); function showToast(){ $readingListToast.css("display", "flex"); setTimeout(function(){ $readingListToast.addClass("shown"); }, 16); } function hideToast(){ $readingListToast.removeClass("shown"); setTimeout(function(){ $readingListToast.css("display", "none"); }, 150); } function getDeploymentType(){ switch(window.readingListsServerVars.deploymentType){ case "development": case "test": return ReadingLists.DeploymentType.dev; case "qa": return ReadingLists.DeploymentType.qa; case "production": return ReadingLists.DeploymentType.prod; case "docker": return ReadingLists.DeploymentType.docker; default: console.error("Unknown deployment environment, defaulting to production"); return ReadingLists.DeploymentType.prod; } } }); } });
prerequisites
basics of Python • basics of data science
skills learned
implement causal models for personalization • evaluate the performance of your causal model using experimental data
Matheus Facure
1 week &middot 6-8 hours per week &middot INTERMEDIATE

pro $24.99 per month

  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose one free eBook per month to keep
  • exclusive 50% discount on all purchases

lite $19.99 per month

  • access to all Manning books, including MEAPs!

team

5, 10 or 20 seats+ for your team - learn more


Look inside

In this liveProject, you’ll use causal inference to investigate data on randomized discounts and determine if an e-commerce company should offer personalized discounting. You’ll estimate a different treatment effect for each customer in the hopes to see if some are positive, and figure out which customers should get what discounts. You’ll utilize Python and machine learning to build this personalization system, and implement a causal model for personalization.

This project is designed for learning purposes and is not a complete, production-ready application or solution.

project author

Matheus Facure
Matheus Facure is an economist, data scientist and causal inference specialist at Nubank. He currently works with adding causal inference capabilities to machine learning models with application in the credit card business, and acts as a consultant for other business areas inside Nubank, such as personal loans and marketing.

prerequisites

This liveProject is for data scientists with knowledge of Python, machine learning, and statistics. To begin this liveProject you will need to be familiar with the following:


TOOLS
  • Basics of Python
  • Basics of pandas
  • Basics of Matplotlib
  • Basics of NumPy
TECHNIQUES
  • Basics of data science and machine learning
  • Basics of causal inference

features

Self-paced
You choose the schedule and decide how much time to invest as you build your project.
Project roadmap
Each project is divided into several achievable steps.
Get Help
While within the liveProject platform, get help from other participants and our expert mentors.
Compare with others
For each step, compare your deliverable to the solutions by the author and other participants.
book resources
Get full access to select books for 90 days. Permanent access to excerpts from Manning products are also included, as well as references to other resources.

choose your plan

team

monthly
annual
$49.99
$399.99
only $33.33 per month
  • five seats for your team
  • access to all Manning books, MEAPs, liveVideos, liveProjects, and audiobooks!
  • choose another free product every time you renew
  • choose twelve free products per year
  • exclusive 50% discount on all purchases
  • Personalizing Discounts project for free
RECENTLY VIEWED