Skip to content

tuantran23012000/Stochastic-logistic-sigmoid-regression

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Stochastic logistic sigmoid regression

SLR

Architecture

INSTALLATION

  • sklearn
  • numpy
  • cvxopt
  • pandas
  • Run on command:
    pip install -r requirements.txt

DATASETS

Download datasets : Link

TRAINING

  • K-Means clustering algorithm:
    python test.py --state train --path_data <path to dataset> --n_clus <number of cluters> --alpha <alpha> --option Kmean --threshold <not default> --max_loop<max training loop>
  • Approximate q-quantiles algorithm:
    python test.py --state train --path_data <path to dataset> --n_clus <number of cluters> --alpha <alpha> --option Quantile --threshold <not default> --max_loop<max training loop>

EVALUATION

  • Evaluate accuracy, f1 score, precision score, recall socre with number of clusters (level-quantiles) and time training:
    python test.py --state eval --path_data <path to dataset> --alpha <alpha> --min_iters <start iter> --max_iters <end iter>
  • Beside, we also provide custom procedure for evaluating accuracy, f1 score, precision score, recall socre with alpha in file model.py. That is
    def weight_eval_alpha() 

ISSUES

  • Data in together group K-Mean (level-quantiles) is a element. You'll see this Warning, to disable that Warning you can add -W ignore before function.py
    Architecture

RESULTS

  • Framingham Heart Disease datasets
    acc-h f1-h pre-h re-h
  • German Credit datasets acc-g f1-g pre-g re-g

TIME TRAINING

  • Framingham Heart Disease datasets
    time-h
  • German Credit datasets time-g

NOTE

If you don't select threshold, output model is accuracy of original logistic regression which is provided by sklearn library

python test.py --state train --path_data <path to dataset> --n_clus <number of cluters> --alpha <alpha> --option Kmean(or Quantile)