A tensorflow implementation of GraphGAN (Graph Representation Learning with Generative Adversarial Nets)
-
Updated
Nov 22, 2019 - Python
A tensorflow implementation of GraphGAN (Graph Representation Learning with Generative Adversarial Nets)
PyTorch implementation of GAN-based text-to-speech synthesis and voice conversion (VC)
《对抗演化与合作跃升》大大简化了几十亿年来生命演化中重要事件和关键节点的理解。包括真核生命的出现、多细胞生命的形成(寒武纪的秘密)、人类的由来、国家的兴起等。它也有助于理解所有人类社会活动中的重要事物的本质,包括宗教、法律、市场经济等。而民族之兴衰、帝国之国运、文明的兴亡也能从中得到解释。这套理论不仅具有宏观的视野,更是跟我们的社会生活息息相关,它蕴含着人类作为一种最成功的生命形态的真正有效的成功学。当人类深刻理解了这套理论,人类就能更好地把握自己未来的命运。
Repository for my 2018 summer internship at GDP Labs, Indonesia about Generative Adversarial Network
A GAN made Tensorflow that generates 128 x 128 pixels images
This repo implements a simple GAN with fc layers and trains it on MNIST
Add a description, image, and links to the generative-adversarial-net topic page so that developers can more easily learn about it.
To associate your repository with the generative-adversarial-net topic, visit your repo's landing page and select "manage topics."