A repository containing the implementation of the paper entitled "Deep Learning Assisted Data Inspection for Radio Astronomy"
Install conda environment by:
conda create --name dl4di_test python=3.7
Run conda environment by:
conda activate dl4di_test
Install dependancies by running:
pip install -r requirements
You need to create the training set using either generate_hera_data.py
or generate_lofar_data.py
(given you have access to the preprocessed lofar .hdf5
files).
For HERA data creation run the following from inside the data_generation directory
python3 generate_hera_data.py
For LOFAR dataset creation run the following from inside the data_generation directory given that the 'path' field is specified correctly in config.py
and you have the correctly preprocessed .h5
LOFAR spectrograms available. The downsampled dataset may be found at: https://doi.org/10.5281/zenodo.3702430.
Note that in order to use this dataset, each of the .zip
files need to be extracted to the directory specified in 'path'
python3 generate_lofar_data.py
Run the following given the correctly generated training files
python3 train.py <training_file> <archtitecutre> -p <wandb_project> -l <latent_dim>
@article{10.1093/mnras/staa1412,
author = {Mesarcik, Michael and Boonstra, Albert-Jan and Meijer, Christiaan and Jansen, Walter and Ranguelova, Elena and van Nieuwpoort, Rob V},
title = "{Deep Learning Assisted Data Inspection for Radio Astronomy}",
journal = {Monthly Notices of the Royal Astronomical Society},
year = {2020},
month = {05},
issn = {0035-8711},
doi = {10.1093/mnras/staa1412},
url = {https://doi.org/10.1093/mnras/staa1412},
note = {staa1412},
eprint = {https://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/staa1412/33319604/staa1412.pdf},
}
- The logging and visualisation data is dependant on wandb (https://www.wandb.com/)
Source code of DL4DI are licensed under the Apache License, version 2.0.