Skip to content

mesarcik/DL4DI

Repository files navigation

DOI

DL4DI: Deep Learning Assisted Data Inspection for Radio Astronomy

A repository containing the implementation of the paper entitled "Deep Learning Assisted Data Inspection for Radio Astronomy"

Installation

Install conda environment by:

    conda create --name dl4di_test python=3.7

Run conda environment by:

    conda activate dl4di_test

Install dependancies by running:

    pip install -r requirements

Usage

You need to create the training set using either generate_hera_data.py or generate_lofar_data.py (given you have access to the preprocessed lofar .hdf5 files).

Data set creation

For HERA data creation run the following from inside the data_generation directory

    python3 generate_hera_data.py

For LOFAR dataset creation run the following from inside the data_generation directory given that the 'path' field is specified correctly in config.py and you have the correctly preprocessed .h5 LOFAR spectrograms available. The downsampled dataset may be found at: https://doi.org/10.5281/zenodo.3702430.

Note that in order to use this dataset, each of the .zip files need to be extracted to the directory specified in 'path'

    python3 generate_lofar_data.py

Training

Run the following given the correctly generated training files

    python3 train.py <training_file> <archtitecutre> -p <wandb_project> -l <latent_dim>

Reference this work

@article{10.1093/mnras/staa1412,
    author = {Mesarcik, Michael and Boonstra, Albert-Jan and Meijer, Christiaan and Jansen, Walter and Ranguelova, Elena and van Nieuwpoort, Rob V},
    title = "{Deep Learning Assisted Data Inspection for Radio Astronomy}",
    journal = {Monthly Notices of the Royal Astronomical Society},
    year = {2020},
    month = {05},
    issn = {0035-8711},
    doi = {10.1093/mnras/staa1412},
    url = {https://doi.org/10.1093/mnras/staa1412},
    note = {staa1412},
    eprint = {https://academic.oup.com/mnras/advance-article-pdf/doi/10.1093/mnras/staa1412/33319604/staa1412.pdf},
}

Notes

Licensing

Source code of DL4DI are licensed under the Apache License, version 2.0.

About

Code for paper entitled "Deep Learning Assisted Data Inspection for Radio Astronomy"

Resources

License

Stars

Watchers

Forks

Packages

No packages published