This npm acts as a scientific calculator and allows you to do many calculations without worrying about formulas.
This module is still under work. My ambition is to get all basic to intermediate to advanced mathematical formulas for Statistics, Vectors, Probability, Complex Numbers, and much more! Please see the methods working so far below:
npm install advanced-calculator
- Basic Math
- Areas
- Volumes
- Exponents
- Radicals
- Graphs
- Trigonometry
- Logarithms
- Conversions
- Constants
- Other
let basicMath = require('advanced-calculator')
basicMath.evaluate('1 + sin(4/2) / 3 ^ 3 -1 * 3 + pi + max(3,2) % log(24)')
// implemented using the Shunting-Yard Algorithm by Dijkstra
basicMath.add(1,2,3,4...arg)
basicMath.sub(1, ...arg)
basicMath.multiply(5,6,7...arg)
basicMath.divide(5, ...arg)
basicMath.sqrt(x)
sin, cos, tan, ln, log, sqrt
'+', '-', '*', '/', '%', '^'
max, min
( )
let Area = require('advanced-calculator')
Area.squarePerimeter(a, unit = "")
Area.squareArea(a, unit = "")
Area.rectanglePerimeter(a, b, unit = "")
Area.rectangleArea(a, b, unit = "")
Area.parallelogramPerimeter(a, b, unit = "")
Area.parallelogramArea(b, h, unit = ""))
Area.circleArea(r, unit = "")
Area.trianglePerimeter(a, b, c, unit = "")
Area.traingleArea(b, h, unit = "")
Area.trapezoidPerimeter(a, b1, b2, unit = "")
Area.trapezoidArea(h, b1, b2, unit = "")
Name Perimeter Area
Triangle a + b + c 12bh
Circle 2 pi r pi r2
Square 4a a2
Rectangle 2(a + b) a2
Parallelogram 2(a + b) bh
Trapezoid 2a + b1 + b2 1/2 (b1 + b2) X h
let Volume = require('advanced-calculator')
Volume.sphereSurfaceArea(r)
Volume.sphereVolume(r)
Volume.cubeSurfaceArea(a)
Volume.cubeVolume(a)
Volume.rectangularprizmSurfaceArea(a, b, c)
Volume.rectangularprizmVolume(a, b, c)
Volume.cylinderSurfaceArea(r, h)
Volume.cylinderVolume(r, h)
Volume.coneSurfaceArea(r, h, l)
Volume.coneVolume(r, h)
Name Surface area Volume
Sphere 4 pi r^2 4/3 pi r^3
Cube 6 a^2 a^3
Rectangular
prizm 2ab + 2bc + 2ca abc
Cylinder 2(pi)r^2 + 2(pi)rh (pi)r^2h
Cone (pi)rl + (pi)r^2 1/3(pi)r^2h
For passing "args" , please follow this syntax: An array with an object with "base" & "exponent" as keys
let Exponents = require('advanced-calculator')
Exponents.multiplyExponents(args)
Exponents.divideExponents(args)
Exponents.negativeExponents(a, n)
Exponents.fractionalExponents(a, p, q)
Exponents.powerOfPower(a, m, p)
Exponents.x10(num, exp)
For passing "args" , please follow this syntax: An array with an object with "base" & "exponent" as keys
let Radicals = require('advanced-calculator')
Radicals.root(base, exp)
Radicals.multiplyRoot(args)
Radicals.divideRoot(args)
Radicals.addRoot(args)
Radicals.subtractRoot(args)
Radicals.exponentRoot(x, n, p)
Radicals.radical(x, n, p)
Radicals.exponentiation(a, m, n)
let Graph = require('advanced-calculator')
Graph.slope(rise, run)
Graph.m(y2, y1, x2, x1)
Graph.yInt(m, b)
Graph.discriminant(a, b, c)
Graph.factors(num)
Graph.quad(a, b, c)
Graph.vertexParabolaStandardForm(a, b, c)
Graph.vertexParabolaVertexForm(h, k)
Graph.concavity(a)
let Trigonometry = require('advanced-calculator')
Trigonometry.radsToDegs(rad)
Trigonometry.degsToRads(deg )
Trigonometry.sinA(opp, hip)
Trigonometry.cosA(adj, hip)
Trigonometry.tanA(opp, adj)
Trigonometry.thetaSin(opp, hip)
Trigonometry.thetaCos(adj, hip)
Trigonometry.thetaTan(opp, adj)
Trigonometry.sineRuleForThetaA(a, b, A)
Trigonometry.sineRuleForThetaB(a, b, B)
Trigonometry.sineRuleForLengthB(b, A, B)
Trigonometry.sineRuleForLengthA(a, A, B)
Trigonometry.cosLawForThetaA(a, b, c)
Trigonometry.cosLawForThetaB(a, b, c)
Trigonometry.cosLawForThetaC(a, b, c)
Trigonometry.cosLawForTheta(a, b, c)
Trigonometry.cosLawFora(b, c, A)
Trigonometry.cosLawForb(a, c, B)
Trigonometry.HeronA(s, a, b, c)
Trigonometry.HeronS(a, b, c)
Trigonometry.exactValues(trig, PIOver)
Trigonometry.angleRelationships(trig, constPIOver, a)
Trigonometry.sumFormulas(trig, a, b)
Trigonometry.differenceFormulas(trig, a, b)
Trigonometry.doubleAngle(trig, a)
let Logarithms = require('advanced-calculator')
Logarithms.log(a, b)
Logarithms.logB(a, x)
Logarithms.logProduct(a, u, v)
Logarithms.logQuotient(a, u, v)
Logarithms.logExponential(a, u, v)
let Conversions = require('advanced-calculator')
Conversions.metreToGiga(n)
Conversions.metreToMega(n)
Conversions.metreToKilo(n)
Conversions.metreToHecto(n)
Conversions.metreToCenti(n)
Conversions.metreToMilli(n)
Conversions.metreToMicro(n)
Conversions.metreToNano(n)
Conversions.kiloToMetre(n)
Conversions.hectoToMetre(n)
Conversions.centiToMetre(n)
Conversions.milliToMetre(n)
Conversions.microToMetre(n)
Conversions.nanoToMetre(n)
Conversions.yardsToFeet(n)
Conversions.feetToYards(n)
Conversions.yardsToInches(n)
Conversions.inchesToYards(n)
Conversions.inchesToMiles(n)
Conversions.feetToInches(n)
Conversions.feetToMeters(n)
Conversions.feetToMiles(n)
Conversions.inchesToMeters(n)
Conversions.milesToYards(n)
Conversions.milesToMeters(n)
Conversions.milesToInches(n)
Conversions.milesToFeet(n)
Conversions.yardsToMiles(n)
Conversions.yardsToMeters(n)
Conversions.toFahrenheit(n)
Conversions.toCelsius(n)
PI: Math.PI,
E: Math.E,
LN10: Math.LN10,
LN2: Math.LN2,
LOG10E: Math.LOG10E,
LOG2E: Math.LOG2E,
FEET_TO_INCHES_FACTOR: 12,
FEET_TO_METERS_FACTOR: 0.3048,
FEET_TO_MILES_FACTOR: 1 / 5280,
FEET_TO_YARDS_FACTOR: 1 / 3,
INCHES_TO_FEET_FACTOR: 1 / 12,
INCHES_TO_METERS_FACTOR: 0.0254,
INCHES_TO_MILES_FACTOR: 1 / 63360,
INCHES_TO_YARDS_FACTOR: 1 / 36,
MILES_TO_FEET_FACTOR: 5280,
MILES_TO_INCHES_FACTOR: 63360,
MILES_TO_METERS_FACTOR: 1609.344,
MILES_TO_YARDS_FACTOR: 1760,
YARDS_TO_INCHES_FACTOR: 36,
YARDS_TO_FEET_FACTOR: 3,
YARDS_TO_METERS_FACTOR: 0.9144,
YARDS_TO_MILES_FACTOR: 1 / 1760,
CELSIUS_TO_FAHRENEIT_MUTLIPLIER_FACTOR: 9 / 5,
CELSIUS_TO_FAHRENEIT_FACTOR: 32
let {speed, time, dist, oneToN,sumOfArithmetic,sumOfAnglesOfNPoly,
sumOfAnglesOfSPoly , diagonalSquare, diagonalCube } =
require('advanced-calculator')
speed(dist, time, unit = "")
time(speed, dist, unit = "")
dist(speed, time, unit = "")
oneToN(n)
sumOfArithmetic(n, a, z)
sumOfAnglesOfNPoly(n)
sumOfAnglesOfSPoly(s)
diagonalSquare(s)
diagonalCube(s)
Speed & Distance speed = distance / time
time = speed / distance
distance = speed X time
Sum of numbers
from 1 to n n (n + 1) / 2
Sum of numbers in an
arithmetic series n (a + z) / 2
Sum of angles inside
of an n-side polygon 180 (n -2)
Num of diagonals inside
of a s-sided polygon s (s - 3) / 2
Length of diagonal
of a square s * sqrt(2)
Length of a space
diagonal of a cube s * sqrt(3)
Nunes, V. (n.d.). List of Math Formulas. Retrieved March 14, 2021, from https://www.matematica.pt/en/useful/math-formulas.php Used images for formulas