Skip to content

jhan15/depth_completion

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Setup

Here describes the setup of the depth completion framework in an EC2 instance.

System setup

Requirements

  • ubuntu 18.04
  • cuda 11.1
  • gcc 7.5.0
  • python 3.7
  • docker 20.10

Setup

# Install nvidia driver (if needed)
$ sudo apt update
$ sudo apt upgrade
$ apt search nvidia-driver
$ sudo apt install nvidia-driver-xxx # that supports cuda 11.1
$ sudo reboot
# Check Driver + GPU
$ nvidia-smi
# Install cuda 11.1 (if needed)
$ wget https://developer.download.nvidia.com/compute/cuda/11.1.1/local_installers/cuda_11.1.1_455.32.00_linux.run
$ sudo sh cuda_11.1.1_455.32.00_linux.run
$ sudo rm -rf cuda_11.1.1_455.32.00_linux.run
# Config CUDA_HOME
export CUDA_HOME=/usr/local/cuda-11.1
export PATH=$CUDA_HOME/bin:$PATH
export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
$ source ~/.bashrc
# Verify cudatoolkit installation
$ nvcc --version
# Check gcc version
$ gcc --version
# Check docker version
$ docker --version
# Check compute capacity (deviceQuery)
$ /usr/local/cuda/extras/demo_suite/deviceQuery

Build

$ cd depth_completion
$ make docker-build

Training

$ cd depth_completion
$ make docker-start-interactive
$ python scripts/train.py configs/xxx.yaml

Two-stage training

# Stage 1 (w/o SAN)
$ python scripts/train.py configs/train_sparse+self_m_resnet_scania_lr.yaml
# Stage 2 (w/ SAN, update the value of checkpoint_path with a pre-trained model from stage 1)
$ python scripts/train.py configs/train_sparse+self_m_resnet_san_scania_lr.yaml

Packages

No packages published

Languages

  • Python 98.1%
  • Dockerfile 1.3%
  • Makefile 0.6%