Skip to content
/ dm Public
forked from cynkra/dm

Working with relational data models in R

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

erictleung/dm

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lifecycle: stable R build status Codecov test coverage CRAN status Launch rstudio.cloud

Are you using multiple data frames or database tables in R? Organize them with dm.

  • Use it for data analysis today.
  • Build data models tomorrow.
  • Deploy the data models to your organization’s Relational Database Management System (RDBMS) the day after.

Overview

dm bridges the gap in the data pipeline between individual data frames and relational databases. It’s a grammar of joined tables that provides a consistent set of verbs for consuming, creating, and deploying relational data models. For individual researchers, it broadens the scope of datasets they can work with and how they work with them. For organizations, it enables teams to quickly and efficiently create and share large, complex datasets.

dm objects encapsulate relational data models constructed from local data frames or lazy tables connected to an RDBMS. dm objects support the full suite of dplyr data manipulation verbs along with additional methods for constructing and verifying relational data models, including key selection, key creation, and rigorous constraint checking. Once a data model is complete, dm provides methods for deploying it to an RDBMS. This allows it to scale from datasets that fit in memory to databases with billions of rows.

Features

dm makes it easy to bring an existing relational data model into your R session. As the dm object behaves like a named list of tables it requires little change to incorporate it within existing workflows. The dm interface and behavior is modeled after dplyr, so you may already be familiar with many of its verbs. dm also offers:

  • visualization to help you understand relationships between entities represented by the tables
  • simpler joins that “know” how tables are related, including a “flatten” operation that automatically follows keys and performs column name disambiguation
  • consistency and constraint checks to help you understand (and fix) the limitations of your data

That’s just the tip of the iceberg. See Getting started to hit the ground running and explore all the features.

Installation

The latest stable version of the {dm} package can be obtained from CRAN with the command

install.packages("dm")

The latest development version of {dm} can be installed from R-universe:

# Enable repository from cynkra
options(
  repos = c(
    cynkra = "https://cynkra.r-universe.dev",
    CRAN = "https://cloud.r-project.org"
  )
)
# Download and install dm in R
install.packages('dm')

or from GitHub:

# install.packages("devtools")
devtools::install_github("cynkra/dm")

Usage

Create a dm object (see Getting started for details).

library(dm)
dm <- dm_nycflights13(table_description = TRUE)
dm
#> ── Metadata ────────────────────────────────────────────────────────────────────
#> Tables: `airlines`, `airports`, `flights`, `planes`, `weather`
#> Columns: 53
#> Primary keys: 4
#> Foreign keys: 4

dm is a named list of tables:

names(dm)
#> [1] "airlines" "airports" "flights"  "planes"   "weather"
nrow(dm$airports)
#> [1] 86
dm$flights %>%
  count(origin)
#> # A tibble: 3 × 2
#>   origin     n
#>   <chr>  <int>
#> 1 EWR      641
#> 2 JFK      602
#> 3 LGA      518

Visualize relationships at any time:

dm %>%
  dm_draw()

Simple joins:

dm %>%
  dm_flatten_to_tbl(flights)
#> Renaming ambiguous columns: %>%
#>   dm_rename(flights, year.flights = year) %>%
#>   dm_rename(flights, month.flights = month) %>%
#>   dm_rename(flights, day.flights = day) %>%
#>   dm_rename(flights, hour.flights = hour) %>%
#>   dm_rename(airlines, name.airlines = name) %>%
#>   dm_rename(airports, name.airports = name) %>%
#>   dm_rename(planes, year.planes = year) %>%
#>   dm_rename(weather, year.weather = year) %>%
#>   dm_rename(weather, month.weather = month) %>%
#>   dm_rename(weather, day.weather = day) %>%
#>   dm_rename(weather, hour.weather = hour)
#> # A tibble: 1,761 × 48
#>    year.flights month.…¹ day.f…² dep_t…³ sched…⁴ dep_d…⁵ arr_t…⁶ sched…⁷ arr_d…⁸
#>           <int>    <int>   <int>   <int>   <int>   <dbl>   <int>   <int>   <dbl>
#>  1         2013        1      10       3    2359       4     426     437     -11
#>  2         2013        1      10      16    2359      17     447     444       3
#>  3         2013        1      10     450     500     -10     634     648     -14
#>  4         2013        1      10     520     525      -5     813     820      -7
#>  5         2013        1      10     530     530       0     824     829      -5
#>  6         2013        1      10     531     540      -9     832     850     -18
#>  7         2013        1      10     535     540      -5    1015    1017      -2
#>  8         2013        1      10     546     600     -14     645     709     -24
#>  9         2013        1      10     549     600     -11     652     724     -32
#> 10         2013        1      10     550     600     -10     649     703     -14
#> # ℹ 1,751 more rows
#> # ℹ abbreviated names: ¹​month.flights, ²​day.flights, ³​dep_time,
#> #   ⁴​sched_dep_time, ⁵​dep_delay, ⁶​arr_time, ⁷​sched_arr_time, ⁸​arr_delay
#> # ℹ 39 more variables: carrier <chr>, flight <int>, tailnum <chr>,
#> #   origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#> #   hour.flights <dbl>, minute <dbl>, time_hour <dttm>, name.airlines <chr>,
#> #   name.airports <chr>, lat <dbl>, lon <dbl>, alt <dbl>, tz <dbl>, dst <chr>,
#> #   tzone <chr>, year.planes <int>, type <chr>, manufacturer <chr>,
#> #   model <chr>, engines <int>, seats <int>, speed <int>, engine <chr>,
#> #   year.weather <int>, month.weather <int>, day.weather <int>,
#> #   hour.weather <int>, temp <dbl>, dewp <dbl>, humid <dbl>, wind_dir <dbl>,
#> #   wind_speed <dbl>, wind_gust <dbl>, precip <dbl>, pressure <dbl>, …

Check consistency:

dm %>%
  dm_examine_constraints()
#> ! Unsatisfied constraints:
#> • Table `flights`: foreign key `tailnum` into table `planes`: values of `flights$tailnum` not in `planes$tailnum`: N725MQ (6), N537MQ (5), N722MQ (5), N730MQ (5), N736MQ (5), …

Learn more in the Getting started article.

Getting help

If you encounter a clear bug, please file an issue with a minimal reproducible example on GitHub. For questions and other discussion, please use community.rstudio.com.


License: MIT © cynkra GmbH.

Funded by:

energie360° cynkra


Please note that the ‘dm’ project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

About

Working with relational data models in R

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Code of conduct

Stars

Watchers

Forks

Packages

 
 
 

Languages

  • R 97.8%
  • JavaScript 1.0%
  • CSS 0.5%
  • Makefile 0.3%
  • HTML 0.2%
  • Dockerfile 0.1%
  • Rez 0.1%