Skip to content

electryone/tefla-1

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build Status Build Status PyPI version Build Status

Tefla

Tefla is built on top of Tensorflow for fast prototyping of deep learning algorithms. It provides higher level access to tensorflow's features. Inerface, Easy to build complex models.

Tefla features:

    - Support for custom optimizers

    . Support for data-sets, data-augmentation
   
    . Support for text datasets

    . Easy to define complex deep models

    . Single and multi GPU training

    . Various prediction functions including ensembling of models

    . Different metrics for performance measurement

    . Custom losses

    . Learning rate schedules, polynomial, step, validation_loss based

    . Semantic segmentation learning

    . Semi-supervised learning

TensorFlow Installation

Tefla requires Tensorflow(version >=r1.8.0)

pip install tensorflow-gpu
or 
pip install tensorflow

Tefla Installation version

Tefla 1.9.0 released

For the latest stable version:

pip install tefla

for current version installation:

pip install git+https://github.com/openagi/tefla.git

For Developer / TO Work with source and modifying source code:

git clone https://github.com/openagi/tefla.git
cd tefla
pip install -r requirements.txt
export PYTHONPATH=.

Documentation

Tefla Docs

Tefla Models

Recent deep convolutional models are easy to implement using TEFLA, the state-of-the-art models are implemented using tefla.

  1. Recent Models

Getting Started

  1. Its as easy as
>>>from tefla.core.layers import conv2d
>>>convolved = conv2d(input, 48, False, None)

2a. Data Directory structure for using normal images

|-- Data_Dir
|   |-- training_image_size (eg. training_256, for 256 image size)
|   |-- validation_image_size (eg. validation_256, for 256 image size)
|   |-- training_labels.csv
|   |-- validation_labels.csv

2b. TFRecords support available using tefla/dataset class

1. [Train v2](https://github.com/openagi/tefla/blob/master/tefla/trainv2.py)

Run training:

python tefla/train.py --model models/alexnet.py --training_cnf models/multiclass_cnf.py --data_dir /path/to/data/dir (as per instructions 2.a)
  1. Mnist example gives a overview about Tefla usages
image_size =(32, 32)
crop_size = (28, 28)
def model(is_training, reuse):
    common_args = common_layer_args(is_training, reuse)
    conv_args = make_args(batch_norm=True, activation=prelu, **common_args)
    fc_args = make_args(activation=prelu, **common_args)
    logit_args = make_args(activation=None, **common_args)

    x = input((None, height, width, 1), **common_args)
    x = conv2d(x, 32, name='conv1_1', **conv_args)
    x = conv2d(x, 32, name='conv1_2', **conv_args)
    x = max_pool(x, name='pool1', **common_args)
    x = dropout(x, drop_p=0.25, name='dropout1', **common_args)
    x = fully_connected(x, n_output=128, name='fc1', **fc_args)
    x = dropout(x, drop_p=0.5, name='dropout2', **common_args)
    logits = fully_connected(x, n_output=10, name="logits", **logit_args)
    predictions = softmax(logits, name='predictions', **common_args)

    return end_points(is_training)

training_cnf = {
    'classification': True,
    'validation_scores': [('validation accuracy', util.accuracy_wrapper), ('validation kappa', util.kappa_wrapper)],
    'num_epochs': 50,
    'lr_policy': StepDecayPolicy(
        schedule={
            0: 0.01,
            30: 0.001,
        }
    )
}
util.init_logging('train.log', file_log_level=logging.INFO, console_log_level=logging.INFO)

trainer = SupervisedTrainer(model, training_cnf, classification=training_cnf['classification'])
trainer.fit(data_set, weights_from=None, start_epoch=1, verbose=1, summary_every=10)

Contributions

Welcome to the fourth release of Tefla, if you find any bug, please report it in the GitHub issues section.

Improvements and requests for new features are more than welcome! Do not hesitate to twist and tweak Tefla, and send pull-requests.

License

MIT License

About

Tensorflow deep-learning framework

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.0%
  • Other 1.0%