Watch a simple neural network recognize / classify hand-drawn Fruit drawings
Dataset to use is the Google Quick Draw dataset Kaggle Link - https://www.kaggle.com/c/quickdraw-doodle-recognition/ Github Link - https://github.com/googlecreativelab/quickdraw-dataset
- Python
- Tensorflow
- Keras
- numpy
- scikit-learn
- PIL
- scipy
- Flask
- JQuery
Download and move into the project directory
$ git clone https://github.com/VinayakBorhade/DoodleRecognition.git
$ cd DoodleRecognition
Run the app with flask server
$ chmod u+x run_server.sh
$ ./run_server.sh
Once server is started, open the UI for app in your browser by entering the follo. link-
localhost:5000/static/predict.html
The Google quickdraw dataset is hosted on Google Cloud Storage
To get a copy of it, you need to use gsutil to download
- Install gsutil from here: https://cloud.google.com/storage/docs/gsutil_install#install
$ curl https://sdk.cloud.google.com | bash
$ exec -l $SHELL
$ gcloud init
- Download all the image drawings from the dataset
$ ./download_fulldataset.sh
The fulldataset is big (~37GB). For initial testing, we would be using a small subset
$ ./download_minidataset.sh