Jump to content

List of nearest exoplanets

From Wikipedia, the free encyclopedia

Epsilon Indi Ab, 12 light-years away, with its parent star Epsilon Indi A blacked out, as pictured by JWST in 2023.[1]
Distribution of nearest known exoplanets as of March 2018

There are 7,026 known exoplanets, or planets outside the Solar System that orbit a star, as of July 24, 2024; only a small fraction of these are located in the vicinity of the Solar System.[2] Within 10 parsecs (32.6 light-years), there are 106 exoplanets listed as confirmed by the NASA Exoplanet Archive.[note 1][3] Among the over 500 known stars and brown dwarfs within 10 parsecs,[4][note 2] around 60 have been confirmed to have planetary systems; 51 stars in this range are visible to the naked eye,[note 3][6] eight of which have planetary systems.

The first report of an exoplanet within this range was in 1998 for a planet orbiting around Gliese 876 (15.3 light-years (ly) away), and the latest as of 2024 is one around Struve 2398 A (11.5 ly). The closest exoplanets are those found orbiting the star closest to the Solar System, which is Proxima Centauri 4.25 light-years away. The first confirmed exoplanet discovered in the Proxima Centauri system was Proxima Centauri b, in 2016. HD 219134 (21.6 ly) has six exoplanets, the highest number discovered for any star within this range.

Most known nearby exoplanets orbit close to their stars. A majority are significantly larger than Earth, but a few have similar masses, including planets around YZ Ceti, Gliese 367, Proxima Centauri, and Barnard's Star which may be less massive than Earth. Several confirmed exoplanets are hypothesized to be potentially habitable, with Proxima Centauri b and GJ 1002 b (15.8 ly) considered among the most likely candidates.[7] The International Astronomical Union has assigned proper names to some known extrasolar bodies, including nearby exoplanets, through the NameExoWorlds project. Planets named in the 2015 event include the planets around Epsilon Eridani (10.5 ly) and Fomalhaut,[note 4][10] while planets named in the 2022 event include those around Gliese 436, Gliese 486, and Gliese 367.[11]

Exoplanets within 10 parsecs

[edit]
Key to colors
° Mercury, Earth and Jupiter (for comparison purposes)
# Confirmed multiplanetary systems
Exoplanets believed to be potentially habitable[7]
Confirmed exoplanets[3]
Host star system Companion exoplanet (in order from star) Notes and additional planetary observations
Name Distance
(ly)
Apparent
magnitude

(V)
Mass
(M)
Label
[note 5]
Mass
(ME)[note 6]
Radius
(R🜨)
Semi-major axis
(AU)
Orbital period
(days)
Eccentricity
Inclination
(°)
Discovery
method
Discovery year
Sun° 0.000016 −26.7 1 Mercury 0.055 0.3829 0.387 88.0 0.205
Earth 1 1 1 365.3 0.0167
Jupiter 317.8 10.973 5.20 4,333 0.0488
Proxima Centauri# 4.2465 11.13 0.123 d ≥0.26 0.0289 5.122 0.04 RV 2022 [13][14] one disputed candidate (c)[15][16][17][18]
b ≥1.07 0.0486 11.19 0.02 RV 2016
Barnard's Star 5.9629 9.51 0.162 b ≥0.37 0.0229 3.153 0.16 RV 2024 [19][20]
Lalande 21185# 8.304 7.52 0.46 b ≥2.69 0.0788 12.94 0.06 RV 2019 1 candidate[21]
c ≥13.6 2.94 2,946 0.13 RV 2021
Epsilon Eridani 10.489 3.73 0.781 Ægir 242 3.53 2,689 0.26 166.5 RV 2000 1 inferred planet, 1 or possibly 2 inner debris discs, and an outer disc[22][23]
Lacaille 9352# 10.724 7.34 0.489 b ≥4.2 0.068 9.262 0.03 RV 2019 1 candidate[24][25]
c ≥7.6 0.120 21.79 0.03 RV 2019
Ross 128 11.007 11.1 0.168 b ≥1.40 0.0496 9.866 0.12 RV 2017 [26]
Gliese 725 A 11.491 8.94 0.330 b ≥2.78 0.068 11.2201 0.0 RV 2024 [27]
Groombridge 34 A# 11.619 8.1 0.38 b ≥3.03 0.072 11.44 0.09 ~54? RV 2014 [28][29]
c ≥36 5.4 7,600 0.27 ~54? RV 2018
Epsilon Indi A 11.867 4.83 0.762 b 2005 28.4 63,400 0.40 103.7 RV 2018 nearest exoplanet directly imaged[30][31]
Tau Ceti# 11.912 3.50 0.78 g ≥1.75 0.133 20.0 0.06 ~35? RV 2017 4 disputed candidates
[32][33][7][34][35][36]
h ≥1.8 0.243 49.4 0.23 ~35? RV 2017
e ≥3.9 0.538 163 0.18 ~35? RV 2017
f ≥3.9 1.33 640 0.16 ~35? RV 2017
GJ 1061# 11.984 7.52 0.113 b ≥1.37 0.021 3.204 <0.31 RV 2019 two solutions for d's orbit[37]
c ≥1.74 0.035 6.689 <0.29 RV 2019
d ≥1.64 0.054 13.03 <0.53 RV 2019
YZ Ceti# 12.122 12.1 0.130 b ≥0.70 0.0163 2.021 0.06 RV 2017 [38]
c ≥1.14 0.0216 3.060 0.0 RV 2017
d ≥1.09 0.0285 4.656 0.07 RV 2017
Luyten's Star# 12.348 11.94 0.29 c ≥1.18 0.0365 4.723 0.10 RV 2017 [39][24]
b ≥2.89 0.0911 18.65 0.17 RV 2017
d ≥10.8 0.712 414 0.17 RV 2019
e ≥9.3 0.849 542 0.03 RV 2019
Teegarden's Star# 12.497 15.40 0.08 b ≥1.16 0.0259 4.906 0.03 RV 2019 [40][41]
c ≥1.05 0.0455 11.42 0.04 RV 2019
d ≥0.82 0.0791 26.13 0.07 RV 2024
Wolf 1061# 14.050 10.1 0.25 b ≥1.91 0.0375 4.887 0.15 RV 2015 [39]
c ≥3.41 0.0890 17.87 0.11 RV 2015
d ≥7.7 0.470 217 0.55 RV 2015
TZ Arietis 14.578 12.30 0.14 b ≥67 0.88 771 0.46 RV 2019 2 refuted candidates[24][42][43]
Gliese 687# 14.839 9.15 0.41 b ≥17.2 0.163 38.14 0.17 RV 2014 [24][42]
c ≥16.0 1.165 728 0.40 RV 2019
Gliese 674 14.849 9.38 0.35 b ≥11.1 0.039 4.694 0.20 RV 2007 [44]
Gliese 876# 15.238 10.2 0.33 d 6.68 0.0210 1.938 0.04 56.7 RV 2005 [45]
c 235 0.1309 30.10 0.26 56.7 RV 2000
b 749 0.2098 61.10 0.03 56.7 RV 1998
e 16 0.3355 123.6 0.05 56.7 RV 2010
GJ 1002# 15.806 13.84 0.12 b ≥1.08 0.0457 10.35 RV 2022 [46]
c ≥1.36 0.0738 21.2 RV 2022
Gliese 832 16.200 8.67 0.45 b 315 3.7 3,853 0.05 51 or 134 RV 2008 1 refuted candidate[47][48]
GJ 3323# 17.531 12.2 0.164 b ≥2.0 0.0328 5.36 0.2 RV 2017 [39]
c ≥2.3 0.126 40.5 0.2 RV 2017
Gliese 251 18.215 9.65 0.372 b ≥4.0 0.0818 14.2 0.10 RV 2020 [49]
Gliese 229 A# 18.791 8.14 0.58 c ≥7.3 0.339 122 0.19 RV 2020 Ab not confirmed until 2020[50]
b ≥8.5 0.898 526 0.10 RV 2014
Gliese 752 A 19.292 9.13 0.46 b ≥12.2 0.343 106 0.10 RV 2018 [51][52]
82 G. Eridani# 19.704 4.26 0.85 b ≥2.0 0.13 18.3 0.09 RV 2011 5 disputed candidates
[53][54][55][56]
d ≥4.7 0.37 89.6 0.13 RV 2011
Gliese 555 20.395 11.32 0.29 b ≥5.5 0.142 36.1 0.08 RV 2023 1 candidate[57]
EQ Pegasi A 20.400 10.38 0.436 b 718 0.643 284 0.35 69.2 Astrometry 2022 [58]
Gliese 581# 20.549 10.5 0.295 e 2.5 0.0280 3.15 0.01 47 RV 2009 3 refuted candidates and a disc[59]
b 20.5 0.0399 5.37 0.03 47 RV 2005
c 6.8 0.0718 12.9 0.03 47 RV 2007
Gliese 338 B 20.658 7.0 0.64 b ≥10.3 0.141 24.5 0.11 RV 2020 [60]
Gliese 625 21.131 10.2 0.30 b ≥2.8 0.0784 14.6 ~0.1 RV 2017 [61]
HD 219134# 21.336 5.57 0.78 b 4.7 1.60 0.0388 3.09 ~0 85.05 RV 2015 [62][63][64]
c 4.4 1.51 0.065 6.77 0.062 87.28 RV 2015
d ≥16 0.237 46.9 0.138 ~87? RV 2015
f ≥7.3 0.146 22.7 0.148 ~87? RV 2015
g ≥11 0.375 94.2 0 ~87? RV 2015
h (e) ≥108 3.11 2,247 0.06 ~87? RV 2015
LTT 1445 A# 22.387 10.53 0.26 c 1.54 1.15 0.0266 3.12 <0.22 87.43 Transit 2021 1 candidate[65][66][67]
b 2.87 1.30 0.0381 5.36 <0.11 89.68 Transit 2019
Gliese 393 22.953 8.65 0.41 b ≥1.71 0.0540 7.03 0.00 RV 2019 [24][68]
Gliese 667 C# 23.623 10.2 0.33 b ≥5.4 0.049 7.20 0.13 ~52? RV 2009 5 dubious candidates
[69][7][70][71][24]
c ≥3.9 0.1251 28.2 0.03 ~52? RV 2011
Gliese 514 24.878 9.03 0.53 b ≥5.2 0.421 140 0.45 RV 2022 [72]
GJ 1151 26.231 14.01 0.164 c ≥10.6 0.571 390 RV 2023 1 refuted candidate[73][74][75][76]
Gliese 486 26.351 11.395 0.32 Su 2.8 1.31 0.0173 1.47 <0.05 88.4 Transit 2021 [77]
Gliese 686 26.613 9.58 0.42 b ≥7.1 0.097 15.5 0.04 RV 2019 [78][24]
GJ 1289 27.275 12.67[79] 0.21 b ≥6.3 0.27 112 0 RV 2024 [80]
61 Virginis# 27.836 4.74 0.95 b ≥6.1 0.05 4.22 0.05 ~77? RV 2009 a debris disc[56]
c ≥17.9 0.22 38.1 0.06 ~77? RV 2009
d ≥10.5 0.47 123 0.12 ~77? RV 2009
CD Ceti 28.052 14.001 0.161 b ≥3.95 0.0185 2.29 0 RV 2020 [81]
Gliese 785# 28.739 6.13 0.78 b ≥17 0.32 75 0.13 RV 2010 [82]
c ≥24 1.18 530 ~0.3 RV 2011
Gliese 849# 28.750 10.4 0.49 b ≥270 2.26 1,910 0.05 RV 2006 [83][24]
c ≥300 4.82 5,520 0.087 RV 2006
Gliese 433# 29.605 9.79 0.48 b ≥6.0 0.062 7.37 0.04 RV 2009 [84][24][50]
d ≥5.2 0.178 36.1 0.07 RV 2020
c ≥32 4.82 5,090 0.12 RV 2012
HD 102365 A 30.396 4.89 0.85 b ≥16 0.46 122 0.34 RV 2010 [85]
Gliese 367# 30.719 9.98 0.45 Tahay 0.63 0.70 0.0071 0.322 0.06 79.89 Transit 2021 [86][87]
c ≥4.1 0.077 11.5 0.09 ~80? RV 2023
d ≥6.0 0.159 34.4 0.14 ~80? RV 2023
Gliese 357# 30.776 10.9 0.34 b 6.1 1.17 0.035 3.93 0.02 88.92 Transit 2019 [88][24]
c ≥3.6 0.061 9.13 0.04 ~89? RV 2019
d ≥7.7 0.204 55.7 0.03 ~89? RV 2019
Gliese 176 30.937 10.1 0.45 b ≥8.0 0.066 8.77 0.08 RV 2007 1 disputed candidate[89][90][24]
GJ 3512# 30.976 13.11 0.123 b ≥147 0.338 204 0.44 RV 2019 [91]
c ≥54 >1.2 >1390 RV 2019
Wolf 1069 31.229 13.99 0.167 b ≥1.26 0.0672 15.6 RV 2023 [92]
AU Microscopii# 31.683 8.63 0.50 b 17 4.38 0.0645 8.463 0.10 89.03 Transit 2020 2 candidates[93][94][95][96]
c <28 3.51 0.1101 18.86 0 88.62 Transit 2020
Gliese 436 31.882 10.67 0.41 Awohali 21.4 4.33 0.0280 2.64 0.15 85.8 RV 2004 [97][98]
Gliese 49 32.158 8.9 0.57 b ≥16.4 0.106 17.3 0.03 RV 2019 [99]
GJ 3988 32.316 13.6 0.184 b ≥3.7 0.0405 6.944 0 RV 2023 [100]
HD 260655# 32.608 9.77 0.439 b 2.14 1.240 0.0293 2.780 0.039 87.35 Transit 2022 [101]
c 3.09 1.533 0.0475 5.706 0.038 87.79 Transit 2022

Excluded objects

[edit]

Unlike for bodies within the Solar System, there is no clearly established method for officially recognizing an exoplanet. According to the International Astronomical Union, an exoplanet should be considered confirmed if it has not been disputed for five years after its discovery.[102] There have been examples where the existence of exoplanets has been proposed, but even after follow-up studies their existence is still considered doubtful by some astronomers. Such cases include Wolf 359 (7.9 ly, in 2019),[24] LHS 288 (15.8 ly, in 2007),[103] and Gliese 682 (16.3 ly, in 2014).[50] There are also several instances where proposed exoplanets were later disproved by subsequent studies, including candidates around Alpha Centauri B (4.36 ly),[104] Barnard's Star (5.96 ly),[105][106] Kapteyn's Star (12.8 ly),[107] Van Maanen 2 (14.1 ly),[108] Groombridge 1618 (15.9 ly),[109] AD Leonis (16.2 ly),[110] 40 Eridani A (16.3 ly),[111][112] VB 10 (19.3 ly),[113] and Fomalhaut (25.1 ly).[114]

In 2021, a candidate planet was detected around Vega, though it has yet to be confirmed.[115] Another candidate planet, Candidate 1, was directly imaged around Alpha Centauri A, though it may also be a clump of asteroids or an artifact of the discovery mechanism.[116] Candidate planets around Luyten 726-8 (8.77 ly)[117] and GJ 3378 (25.2 ly) were reported in 2024.[80]

The Working Group on Extrasolar Planets of the International Astronomical Union adopted in 2003 a working definition on the upper limit for what constitutes a planet: not being massive enough to sustain thermonuclear fusion of deuterium. Some studies have calculated this to be somewhere around 13 times the mass of Jupiter, and therefore objects more massive than this are usually classified as brown dwarfs.[118] Some proposed candidate exoplanets have been shown to be massive enough to fall above the threshold, and thus are likely brown dwarfs, as is the case for: SCR 1845-6357 B (13.1 ly),[119] SDSS J1416+1348 B (30.3 ly),[120] and WISE 1217+1626 B (30 ly).[121]

Excluded from the current list are known examples of potential free-floating sub-brown dwarfs, or "rogue planets", which are bodies that are too small to undergo fusion yet they do not revolve around a star. Known such examples include: WISE 0855−0714 (7.4 ly),[122] UGPS 0722-05, (13.4 ly)[123] WISE 1541−2250 (18.6 ly),[124] and SIMP J01365663+0933473 (20.0 ly).[125]

See also

[edit]

Notes

[edit]
  1. ^ Listed values are primarily taken from NASA Exoplanet Archive,[3] but other databases include a few additional exoplanet entries tagged as "Confirmed" that have yet to be compiled into the NASA archive. Such databases include:
    "Exoplanet Catalog". Extrasolar Planets Encyclopaedia. 1995. Full table.
    "Exoplanets Data Explorer". Exoplanet Orbit Database. California Planet Survey. Click the "+" button to visualize additional parameters.
    "Open Exoplanet Catalogue". Click the "Show options" to visualize additional parameters. Archived from the original on 2017-09-02. Retrieved 2015-02-14.
  2. ^ For reference, the 100th closest known star system in April 2021 was EQ Pegasi (20.4 ly).[4]
  3. ^ According to the Bortle scale, an astronomical object is visible to the naked eye under "typical" dark-sky conditions in a rural area if it has an apparent magnitude smaller than +6.5. To the unaided eye, the limiting magnitude is +7.6 to +8.0 under "excellent" dark-sky conditions (with effort).[5]
  4. ^ The star Epsilon Eridani was named Ran (after Rán, the Norse goddess of the sea), and the planet Epsilon Eridani b was named AEgir (after Ægir, Rán's husband),[8] while the planet Fomalhaut b was named Dagon (after Dagon, an ancient Syrian “fish god”[9]).[10]
  5. ^ Exoplanet naming convention assigns uncapitalized letters starting from b to each planet based on chronological order of their initial report, and in increasing order of distance from the parent star for planets reported at the same time. Omitted letters signify planets that have yet to be confirmed, or planets that have been retracted altogether.
  6. ^ Most reported exoplanet masses have very large error margins (typically, between 10% and 30%). The mass of an exoplanet has generally been inferred from measurements on changes in the radial velocity of the host star, but this kind of measurement only allows for an estimate on the exoplanet's orbital parameters, but not on their orbital inclination (i). As such, most exoplanets only have an estimated minimum mass (Mreal*sin(i)), where their true masses are statistically expected to come close to this minimum, with only about 13% chance for the mass of an exoplanet to be more than double its minimum mass.[12]

References

[edit]
  1. ^ "NASA's Webb Images Cold Exoplanet 12 Light-Years Away". nasa.gov. NASA Webb Mission Team. Retrieved Jul 24, 2024.
  2. ^ Schneider, Jean (1995). "Interactive Extra-solar Planets Catalog". Extrasolar Planets Encyclopaedia. Archived from the original on 2012-02-12. Retrieved 2018-03-20.
  3. ^ a b c "NASA Exoplanet Archive—Confirmed Planetary Systems". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2023-08-18.
  4. ^ a b Reylé, Céline; Jardine, Kevin; Fouqué, Pascal; Caballero, Jose A.; Smart, Richard L.; Sozzetti, Alessandro (30 April 2021). "The 10 parsec sample in the Gaia era". Astronomy & Astrophysics. 650: A201. arXiv:2104.14972. Bibcode:2021A&A...650A.201R. doi:10.1051/0004-6361/202140985. S2CID 233476431. Data available at https://gruze.org/10pc/
  5. ^ Bortle, John E. (2001). "Light Pollution And Astronomy: The Bortle Dark-Sky Scale". Sky & Telescope. Archived from the original on 2009-03-23. Retrieved 2014-05-20.
  6. ^ Powell, Richard (2006). "Stars within 50 light years". An Atlas of the Universe. Archived from the original on 2014-06-27. Retrieved 2014-05-17.
  7. ^ a b c d "The Habitable Exoplanets Catalog". Planetary Habitability Laboratory. University of Puerto Rico in Arecibo. 2015-09-01. Archived from the original on 2016-01-09. Retrieved 2015-09-17.
  8. ^ "epsilon Eridani". NameExoWorlds. International Astronomical Union. Archived from the original on 2018-02-15. Retrieved 2018-05-14.
  9. ^ "Fomalhaut (alpha Piscis Austrini)". Nameexoworlds. International Astronomical Union. Archived from the original on 2017-04-30. Retrieved 2018-05-14.
  10. ^ a b "Final Results of NameExoWorlds Public Vote Released" (Press release). International Astronomical Union. 2015-12-15. Archived from the original on 2018-05-15. Retrieved 2018-03-17.
  11. ^ "2022 Approved Names". nameexoworlds.iau.org. IAU. Retrieved 7 June 2023.
  12. ^ Cumming, Andrew; Butler, R. Paul; Marcy, Geoffrey W.; et al. (2008). "The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets". Publications of the Astronomical Society of the Pacific. 120 (867): 531–554. arXiv:0803.3357. Bibcode:2008PASP..120..531C. doi:10.1086/588487. S2CID 10979195.
  13. ^ Anglada-Escudé, Guillem; Amado, Pedro J.; Barnes, John; et al. (2016). "A terrestrial planet candidate in a temperate orbit around Proxima Centauri". Nature. 536 (7617): 437–440. arXiv:1609.03449. Bibcode:2016Natur.536..437A. doi:10.1038/nature19106. PMID 27558064. S2CID 4451513.
  14. ^ Faria, J. P.; Suárez Mascareño, A.; et al. (January 4, 2022). "A candidate short-period sub-Earth orbiting Proxima Centauri" (PDF). Astronomy & Astrophysics. 658. European Southern Observatory: 17. arXiv:2202.05188. Bibcode:2022A&A...658A.115F. doi:10.1051/0004-6361/202142337.
  15. ^ Damasso, Mario; Del Sordo, Fabio; Anglada-Escudé, Guillem; et al. (15 January 2020). "A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU". Science Advances. 6 (3). eaax7467. Bibcode:2020SciA....6.7467D. doi:10.1126/sciadv.aax7467. PMC 6962037. PMID 31998838.
  16. ^ Kervella, Pierre; Arenou, Frédéric; Schneider, Jean (2020). "Orbital inclination and mass of the exoplanet candidate Proxima c". Astronomy & Astrophysics. 635: L14. arXiv:2003.13106. Bibcode:2020A&A...635L..14K. doi:10.1051/0004-6361/202037551. ISSN 0004-6361. S2CID 214713486.
  17. ^ Benedict, G. Fritz; McArthur, Barbara E. (16 June 2020). "A Moving Target—Revising the Mass of Proxima Centauri c". Research Notes of the AAS. 4 (6): 86. Bibcode:2020RNAAS...4...86B. doi:10.3847/2515-5172/ab9ca9. S2CID 225798015.
  18. ^ Artigau, Étienne; Cadieux, Charles; Cook, Neil J.; Doyon, René; Vandal, Thomas; Donati, Jean-Françcois; Moutou, Claire; Delfosse, Xavier; Fouqué, Pascal; Martioli, Eder; Bouchy, François; Parsons, Jasmine; Carmona, Andres; Dumusque, Xavier; Astudillo-Defru, Nicola; Bonfils, Xavier; Mignon, Lucille (2022). "Line-by-line Velocity Measurements: An Outlier-resistant Method for Precision Velocimetry". The Astronomical Journal. 164 (3): 84. arXiv:2207.13524. Bibcode:2022AJ....164...84A. doi:10.3847/1538-3881/ac7ce6. S2CID 251105120.
  19. ^ ESO. "Scientists discover planet orbiting closest single star to our sun". phys.org. Retrieved 2024-10-05.
  20. ^ Hernández, J. I. González; Mascareño, A. Suárez; Silva, A. M.; Stefanov, A. K.; Faria, J. P.; Tabernero, H. M.; Sozzetti, A.; Rebolo, R.; Pepe, F.; Santos, N. C.; Cristiani, S.; Lovis, C.; Dumusque, X.; Figueira, P.; Lillo-Box, J. (2024-10-01). "A sub-Earth-mass planet orbiting Barnard's star". Astronomy & Astrophysics. 690: A79. arXiv:2410.00569. doi:10.1051/0004-6361/202451311. ISSN 0004-6361.
  21. ^ Hurt, Spencer A.; Fulton, Benjamin; Isaacson, Howard; Rosenthal, Lee J.; Howard, Andrew W.; Weiss, Lauren M.; Petigura, Erik A. (2021), "Confirmation of the Long-Period Planet Orbiting Gliese 411 and the Detection of a New Planet Candidate", The Astronomical Journal, 163 (5): 218, arXiv:2107.09087, Bibcode:2022AJ....163..218H, doi:10.3847/1538-3881/ac5c47, S2CID 236134034
  22. ^ Booth, Mark; Pearce, Tim D; Krivov, Alexander V; Wyatt, Mark C; Dent, William R F; Hales, Antonio S; Lestrade, Jean-François; Cruz-Sáenz de Miera, Fernando; Faramaz, Virginie C; Löhne, Torsten; Chavez-Dagostino, Miguel (2023-03-30). "The clumpy structure of ϵ Eridani's debris disc revisited by ALMA". Monthly Notices of the Royal Astronomical Society. 521 (4). Oxford University Press (OUP): 6180–6194. arXiv:2303.13584. Bibcode:2023MNRAS.521.6180B. doi:10.1093/mnras/stad938. ISSN 0035-8711.
  23. ^ Feng, Fabo; Butler, R. Paul; et al. (July 2023). "Revised orbits of the two nearest Jupiters". Monthly Notices of the Royal Astronomical Society. 525 (1): 607–619. arXiv:2307.13622. Bibcode:2023MNRAS.525..607F. doi:10.1093/mnras/stad2297.
  24. ^ a b c d e f g h i j k l Barnes, J. R.; Kiraga, M.; Diaz, M.; Berdiñas, Z.; Jenkins, J. S.; Keiser, S.; Thompson, I.; Crane, J. D.; Shectman, S. A.; Teske, J. K.; Holden, B.; Laughlin, G.; Burt, J.; Vogt, S. S.; Arriagada, P.; Butler, R. P.; Anglada-Escudé, G.; Jones, H. R. A.; Tuomi, M. (11 June 2019). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood". arXiv:1906.04644 [astro-ph.EP].
  25. ^ Jeffers, S. V.; Dreizler, S.; Barnes, J. R.; Haswell, C. A.; Nelson, R. P.; Rodríguez, E.; López-González, M. J.; Morales, N.; Luque, R.; et al. (2020), "A multiple planet system of super-Earths orbiting the brightest red dwarf star GJ887", Science, 368 (6498): 1477–1481, arXiv:2006.16372, Bibcode:2020Sci...368.1477J, doi:10.1126/science.aaz0795, PMID 32587019, S2CID 220075207
  26. ^ Bonfils, Xavier (2017). "A temperate exo-Earth around a quiet M dwarf at 3.4 parsecs". Astronomy and Astrophysics. 613: A25. arXiv:1711.06177. Bibcode:2018A&A...613A..25B. doi:10.1051/0004-6361/201731973. S2CID 37148632.
  27. ^ Cortes-Zuleta, P.; Boisse, I.; Ould-Elhkim, M.; Wilson, T. G.; Larue, P.; Carmona, A.; Delfosse, X.; Donati, J.-F.; Forveille, T. (2024-11-14), Gl 725A b: a potential super-Earth detected with SOPHIE and SPIRou in an M dwarf binary system at 3.5 pc, doi:10.48550/arXiv.2411.09506, retrieved 2024-11-27
  28. ^ Howard, Andrew W.; et al. (October 2014). "The NASA-UC-UH ETA-Earth Program. IV. A Low-mass Planet Orbiting an M Dwarf 3.6 PC from Earth". The Astrophysical Journal. 794 (1): 9. arXiv:1408.5645. Bibcode:2014ApJ...794...51H. doi:10.1088/0004-637X/794/1/51. S2CID 17361592. 51.
  29. ^ Pinamonti, M.; Damasso, M.; Marzari, F.; Sozzetti, A.; Desidera, S.; Maldonado, J.; Scandariato, G.; Affer, L.; Lanza, A. F.; Bignamini, A.; Bonomo, A. S.; Borsa, F.; Claudi, R.; Cosentino, R.; Giacobbe, P.; González-Álvarez, E.; González Hernández, J. I.; Gratton, R.; Leto, G.; Malavolta, L.; Martinez Fiorenzano, A.; Micela, G.; Molinari, E.; Pagano, I.; Pedani, M.; Perger, M.; Piotto, G.; Rebolo, R.; Ribas, I.; et al. (2018). "The HADES RV Programme with HARPS-N at TNG. VIII. GJ15A: A multiple wide planetary system sculpted by binary interaction". Astronomy and Astrophysics. 617: A104. arXiv:1804.03476. Bibcode:2018A&A...617A.104P. doi:10.1051/0004-6361/201732535. S2CID 54990041.
  30. ^ Feng, Fabo; Anglada-Escudé, Guillem; Tuomi, Mikko; Jones, Hugh R. A.; Chanamé, Julio; Butler, Paul R.; Janson, Markus (14 October 2019). "Detection of the nearest Jupiter analog in radial velocity and astrometry data". Monthly Notices of the Royal Astronomical Society. 490 (4): 5002–5016. arXiv:1910.06804. Bibcode:2019MNRAS.490.5002F. doi:10.1093/mnras/stz2912. S2CID 204575783.
  31. ^ Matthews, E. C.; Carter, A. L.; et al. (July 2024). "A temperate super-Jupiter imaged with JWST in the mid-infrared". Nature. 633 (8031): 789–792. Bibcode:2024Natur.633..789M. doi:10.1038/s41586-024-07837-8. PMC 11424479. PMID 39048015.
  32. ^ "tau Cet". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  33. ^ "tau Ceti". Open Exoplanet Catalogue. Archived from the original on 2014-03-14. Retrieved 2014-05-17.
  34. ^ "tau Cet b". Extrasolar Planets Encyclopaedia. Archived from the original on 2017-11-07. Retrieved 2018-03-22.
  35. ^ "tau Cet c". Extrasolar Planets Encyclopaedia. Archived from the original on 2017-12-01. Retrieved 2018-03-22.
  36. ^ "tau Cet d". Extrasolar Planets Encyclopaedia. Archived from the original on 2017-12-01. Retrieved 2018-03-22.
  37. ^ Dreizler, S.; Jeffers, S. V.; Rodríguez, E.; Zechmeister, M.; Barnes, J.R.; Haswell, C.A.; Coleman, G. A. L.; Lalitha, S.; Hidalgo Soto, D.; Strachan, J.B.P.; Hambsch, F-J.; López-González, M. J.; Morales, N.; Rodríguez López, C.; Berdiñas, Z. M.; Ribas, I.; Pallé, E.; Reiners, Ansgar; Anglada-Escudé, G. (2019-08-13). "Red Dots: A temperate 1.5 Earth-mass planet in a compact multi-terrestrial planet system around GJ1061". Monthly Notices of the Royal Astronomical Society. 493 (1): 536. arXiv:1908.04717. Bibcode:2020MNRAS.493..536D. doi:10.1093/mnras/staa248. S2CID 199551874.
  38. ^ Stock, S.; et al. (2020). "The CARMENES search for exoplanets around M dwarfs". Astronomy & Astrophysics. 636: A119. arXiv:2002.01772. Bibcode:2020A&A...636A.119S. doi:10.1051/0004-6361/201936732. S2CID 211032169.
  39. ^ a b c Astudillo-Defru, Nicola; Forveille, Thierry; Bonfils, Xavier; Ségransan, Damien; Bouchy, François; Delfosse, Xavier; et al. (2017). "The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293". Astronomy and Astrophysics. 602. A88. arXiv:1703.05386. Bibcode:2017A&A...602A..88A. doi:10.1051/0004-6361/201630153. S2CID 119418595.
  40. ^ Caballero, J. A.; Reiners, Ansgar; Ribas, I.; Dreizler, S.; Zechmeister, M.; et al. (12 June 2019). "The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star" (PDF). Astronomy & Astrophysics. 627: A49. arXiv:1906.07196. Bibcode:2019A&A...627A..49Z. doi:10.1051/0004-6361/201935460. ISSN 0004-6361. S2CID 189999121.
  41. ^ Dreizler, S.; Luque, R.; et al. (April 2024). "Teegarden's Star revisited: A nearby planetary system with at least three planets". Astronomy & Astrophysics. 684: A117. arXiv:2402.00923. Bibcode:2024A&A...684A.117D. doi:10.1051/0004-6361/202348033.
  42. ^ a b Feng, Fabo; et al. (October 2020). "Search for Nearby Earth Analogs. III. Detection of 10 New Planets, 3 Planet Candidates, and Confirmation of 3 Planets around 11 Nearby M Dwarfs". The Astrophysical Journal Supplement Series. 250 (2): 29. arXiv:2008.07998. Bibcode:2020ApJS..250...29F. doi:10.3847/1538-4365/abb139. S2CID 221150644.
  43. ^ Quirrenbach, A.; Passegger, V. M.; Trifonov, T.; Amado, P. J.; Caballero, J. A.; Reiners, A.; Ribas, I.; Aceituno, J.; Béjar, V. J. S.; Chaturvedi, P.; González-Cuesta, L.; Henning, T.; Herrero, E.; Kaminski, A.; Kürster, M.; Lalitha, S.; Lodieu, N.; López-González, M. J.; Montes, D.; Pallé, E.; Perger, M.; Pollacco, D.; Reffert, S.; Rodríguez, E.; López, C. Rodríguez; Shan, Y.; Tal-Or, L.; Osorio, M. R. Zapatero; Zechmeister, M. (2022). "The CARMENES search for exoplanets around M dwarfs". Astronomy & Astrophysics. 663: A48. arXiv:2203.16504. Bibcode:2022A&A...663A..48Q. doi:10.1051/0004-6361/202142915. S2CID 247835988.
  44. ^ Bonfils, X.; et al. (2007). "The HARPS search for southern extra-solar planets. X. A m sin i = 11 M🜨 planet around the nearby spotted M dwarf GJ 674". Astronomy and Astrophysics. 474 (1): 293–299. arXiv:0704.0270. Bibcode:2007A&A...474..293B. doi:10.1051/0004-6361:20077068. S2CID 119671420.
  45. ^ Moutou, C.; Delfosse, X.; et al. (July 2023). "Characterizing planetary systems with SPIRou: M-dwarf planet-search survey and the multiplanet systems GJ 876 and GJ 1148". Astronomy & Astrophysics. 678: A207. arXiv:2307.11569. Bibcode:2023A&A...678A.207M. doi:10.1051/0004-6361/202346813.
  46. ^ Suárez Mascareño, A.; González-Alvarez, E.; et al. (December 2022). "Two temperate Earth-mass planets orbiting the nearby star GJ 1002". Astronomy & Astrophysics. 670: A5. arXiv:2212.07332. Bibcode:2023A&A...670A...5S. doi:10.1051/0004-6361/202244991. S2CID 254353639.
  47. ^ Gorrini, P.; Astudillo-Defru, N.; Dreizler, S.; Damasso, M.; Díaz, R. F.; Bonfils, X.; Jeffers, S. V.; Barnes, J. R.; Del Sordo, F.; Almenara, J. -M.; Artigau, E.; Bouchy, F.; Charbonneau, D.; Delfosse, X.; Doyon, R.; Figueira, P.; Forveille, T.; Haswell, C. A.; López-González, M. J.; Melo, C.; Mennickent, R. E.; Gaisné, G.; Morales, N.; Murgas, F.; Pepe, F.; Rodríguez, E.; Santos, N. C.; Tal-Or, L.; Tsapras, Y.; Udry, S. (2022). "Detailed stellar activity analysis and modelling of GJ 832". Astronomy & Astrophysics. 664: A64. arXiv:2206.07552. Bibcode:2022A&A...664A..64G. doi:10.1051/0004-6361/202243063. S2CID 249674385.
  48. ^ Philipot, F.; Lagrange, A.-M.; et al. (August 2023). "Multi techniques approach to identify and/or constrain radial velocity sub-stellar companions". Astronomy & Astrophysics. 678. arXiv:2308.05417. Bibcode:2023A&A...678A.107P. doi:10.1051/0004-6361/202346612.
  49. ^ Stock, S.; et al. (2020), "The CARMENES search for exoplanets around M dwarfs Three temperate-to-warm super-Earths", Astronomy & Astrophysics, A112: 643, arXiv:2010.00474, Bibcode:2020A&A...643A.112S, doi:10.1051/0004-6361/202038820, S2CID 222090233
  50. ^ a b c Feng, Fabo; Butler, R. Paul; Shectman, Stephen A.; Crane, Jeffrey D.; Vogt, Steve; Chambers, John; Jones, Hugh R. A.; Wang, Sharon Xuesong; Teske, Johanna K.; Burt, Jenn; Díaz, Matías R.; Thompson, Ian B. (8 January 2020). "Search for Nearby Earth Analogs. II. Detection of Five New Planets, Eight Planet Candidates, and Confirmation of Three Planets around Nine Nearby M Dwarfs". The Astrophysical Journal Supplement Series. 246 (1): 11. arXiv:2001.02577. Bibcode:2020ApJS..246...11F. doi:10.3847/1538-4365/ab5e7c. S2CID 210064560.
  51. ^ Kaminski, Adrian; Trifonov, Trifon; Caballero, José A.; Quirrenbach, Andreas; Ribas, Ignasi; Reiners, Ansgar; Amado, Pedro J.; Zechmeister, Mathias; Dreizler, Stefan; Perger, Manuel; Tal-Or, Lev; Bonfils, Xavier; Mayor, Michel; Astudillo-Defru, Nicola; Bauer, Florian F.; Béjar, Victor J. S.; Cifuentes, Carlos; Colomé, Josep; Cortés-Contreras, Miriam; Delfosse, Xavier; Díez-Alonso, Enrique; Forveille, Thierry; Guenther, Eike W.; Hatzes, Artie P.; Henning, Thomas K.; Jeffers, Sandra V.; Kürster, Martin; Lafarga, Marina; Luque, Rafael; Mandel, Holger; Montes, David; Morales, Juan Carlos; Passegger, Vera Maria; Pedraz, Sandos; Reffert, Sabine; Sadegi, Sepideh; Schweitzer, Andreas; Seifert, Walter; Stahl, Otmar; Udry, Stéphane (3 August 2018). "The CARMENES search for exoplanets around M dwarfs. A Neptune-mass planet traversing the habitable zone around HD 180617". Astronomy & Astrophysics. 618: A115. arXiv:1808.01183. Bibcode:2018A&A...618A.115K. doi:10.1051/0004-6361/201833354. S2CID 118980171.
  52. ^ Burt, Jennifer; Feng, Fabo; et al. (January 2021). "A Collage of Small Planets from the Lick-Carnegie Exoplanet Survey: Exploring the Super-Earth and Sub-Neptune Mass Regime". The Astronomical Journal. 161 (1): 10. arXiv:2011.08867. Bibcode:2021AJ....161...10B. doi:10.3847/1538-3881/abc2d0.
  53. ^ "HD 20794". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  54. ^ "HD 20794 f". Extrasolar Planets Encyclopaedia. Archived from the original on 2018-03-20. Retrieved 2018-03-22.
  55. ^ "HD 20794 g". Extrasolar Planets Encyclopaedia. Archived from the original on 2018-03-20. Retrieved 2018-03-22.
  56. ^ a b Cretignier, M.; Dumusque, X.; et al. (August 2023). "YARARA V2: Reaching sub-m s−1 precision over a decade using PCA on line-by-line radial velocities". Astronomy & Astrophysics. 678: A2. arXiv:2308.11812. Bibcode:2023A&A...678A...2C. doi:10.1051/0004-6361/202347232. S2CID 261076243.
  57. ^ González-Álvarez, E.; Kemmer, J.; et al. (July 2023). "The CARMENES search for exoplanets around M dwarfs. A sub-Neptunian mass planet in the habitable zone of HN Lib". Astronomy & Astrophysics. 675: A141. arXiv:2305.19677. Bibcode:2023A&A...675A.141G. doi:10.1051/0004-6361/202346276.
  58. ^ Curiel, Salvador; Ortiz-León, Gisela N.; Mioduszewski, Amy J.; Sanchez-Bermudez, Joel (September 2022). "3D Orbital Architecture of a Dwarf Binary System and Its Planetary Companion". The Astronomical Journal. 164 (3): 93. arXiv:2208.14553. Bibcode:2022AJ....164...93C. doi:10.3847/1538-3881/ac7c66. S2CID 251953478.
  59. ^ von Stauffenberg, A.; Trifonov, T.; Quirrenbach, A.; et al. (2024-06-05). "The CARMENES search for exoplanets around M dwarfs. Revisiting the GJ 581 multi-planetary system with new Doppler measurements from CARMENES, HARPS, and HIRES". Astronomy & Astrophysics. arXiv:2407.11520. doi:10.1051/0004-6361/202449375. ISSN 0004-6361.
  60. ^ González-Álvarez, E.; Osorio, M. R. Zapatero; Caballero, J. A.; Sanz-Forcada, J.; Béjar, V. J. S.; González-Cuesta, L.; Dreizler, S.; Bauer, F. F.; Rodríguez, E.; Tal-Or, L.; Zechmeister, M.; Montes, D.; López-González, M. J.; Ribas, I.; Reiners, Ansgar; Quirrenbach, A.; Amado, P. J.; Anglada-Escudé, G.; Azzaro, M.; Cortés-Contreras, M.; Hatzes, A. P.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Morales, J. C.; Pallé, E.; Perger, M.; Schmitt, J. H. M. M. (29 March 2020). "The CARMENES search for exoplanets around M dwarfs. A super-Earth planet orbiting HD 79211 (GJ 338 B)". Astronomy & Astrophysics. A93: 637. arXiv:2003.13052. Bibcode:2020A&A...637A..93G. doi:10.1051/0004-6361/201937050. S2CID 214714124.
  61. ^ "GJ 625". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  62. ^ Vogt, Steven S.; et al. (November 2015). "Six Planets Orbiting HD 219134". The Astrophysical Journal. 814 (1): 12. arXiv:1509.07912. Bibcode:2015ApJ...814...12V. doi:10.1088/0004-637X/814/1/12. S2CID 45438051.
  63. ^ Johnson, Marshall C.; et al. (April 2016). "A 12-year Activity Cycle for the Nearby Planet Host Star HD 219134". The Astrophysical Journal. 821 (2): 74. arXiv:1602.05200. Bibcode:2016ApJ...821...74J. doi:10.3847/0004-637X/821/2/74. S2CID 118651905.
  64. ^ Gillon, Michaël; et al. (2017). "Two massive rocky planets transiting a K-dwarf 6.5 parsecs away". Nature Astronomy. 1 (3). 0056. arXiv:1703.01430. Bibcode:2017NatAs...1E..56G. doi:10.1038/s41550-017-0056. S2CID 56075932.
  65. ^ Almenara, Jose-Manuel; Berlind, Perry; Bouchy, Franois; Burke, Chris J.; Delfosse, Xavier; Díaz, Rodrigo F.; Dressing, Courtney D.; Esquerdo, Gilbert A.; Figueira, Pedro; Forveille, Thierry; Fur'esz, G'abor; Henze, Christopher E.; Jao, Wei-Chun; L'epine, S'ebastien; Levine, Alan M.; Lovis, Christophe; Mink, Jessica; Muirhead, Philip S.; Murgas, Felipe; Pepe, Francesco; Tenenbaum, Peter; Teske, Johanna K.; Twicken, Dr Joseph D.; Udry, St'ephane; Jenkins, Jon M.; Winn, Joshua N.; Seager, Sara; Latham, David W.; Vanderspek, Roland; Ricker, George R.; Bonfils, Xavier; Winston, Elaine; Diamond-Lowe, Hannah; Henry, Todd J.; Vrijmoet, Eliot; Eastman, Jason D.; Horch, Elliott P.; Astudillo-Defru, Nicola; Charbonneau, David; Irwin, Jonathan M.; Medina, Amber A.; Winters, Jennifer G. (24 June 2019). "Three Red Suns in the Sky: A Transiting, Terrestrial Planet in a Triple M Dwarf System at 6.9 Parsecs". The Astronomical Journal. 158 (4): 152. arXiv:1906.10147. Bibcode:2019AJ....158..152W. doi:10.3847/1538-3881/ab364d. S2CID 195584444.
  66. ^ Winters, Jennifer G.; Cloutier, Ryan; Medina, Amber A.; Irwin, Jonathan M.; Charbonneau, David; Astudillo-Defru, Nicola; Bonfils, Xavier; Howard, Andrew W.; Isaacson, Howard; Bean, J. L.; Seifahrt, A.; Teske, J. K.; Eastman, Jason D.; Twicken, Joseph D.; Collins, K. A.; Jensen, E. L. N.; Quinn, S. N.; Payne, M. J.; Kristiansen, M. H.; Spencer, A.; Vanderburg, Andrew; Zechmeister, Mathias; Weiss, L. M.; Wang, S. X.; Wang, G.; Udry, Stéphane; Terentev, I. A.; Sturmer, J.; Stefansson, G.; Shectman, Stephen A.; Sefako, R.; Schwengeler, H. M.; Schwarz, R. P.; Scarsdale, N.; Rubenzahl, R. A.; Roy, A.; Rosenthal, L. J.; Robertson, P.; Petigura, Erik A.; Pepe, Francesco; Omohundro, M.; Murphy, J. M. A.; Murgas, Felipe; Movcnik, T.; Montet, B. T.; Mennickent, R.; Mayo, A. W.; Massey, B.; Lubin, J.; Lovis, Christophe; Lewin, P.; Kasper, D.; Kane, S. R.; Jenkins, J. M.; Huber, D.; Horne, K.; Hill, M. L.; Gorrini, P.; Giacalone, S.; Fulton, Benjamin J.; Forveille, Thierry; Figueira, Pedro; Fetherolf, T.; Dressing, Courtney D.; Díaz, Rodrigo F.; Delfosse, Xavier; Dalba, P. A.; Dai, F.; Cortes, C. C.; Crossfield, Ian J. M.; Crane, Jeffrey D.; Conti, D. M.; Collins, K. I.; Chontos, A.; Butler, R. Paul; Brown, P.; Brady, M.; Bouchy, François; Behmard, A.; Beard, C.; Batalha, Natalie M.; Almenara, José M. (2022). "A Second Planet Transiting LTT 1445A and a Determination of the Masses of Both Worlds". The Astronomical Journal. 163 (4): 168. arXiv:2107.14737. Bibcode:2022AJ....163..168W. doi:10.3847/1538-3881/ac50a9. S2CID 236635391.
  67. ^ Lavie, B.; Bouchy, F.; et al. (May 2023). "Planetary system around LTT 1445A unveiled by ESPRESSO: Multiple planets in a triple M-dwarf system". Astronomy & Astrophysics. 673: A69. arXiv:2210.09713. Bibcode:2023A&A...673A..69L. doi:10.1051/0004-6361/202143007.
  68. ^ Amado, Pedro J.; Bauer, Florian F.; Rodríguez López, Cristina; Rodríguez, Eloy; Cardona Guillén, C.; Perger, M.; Caballero, José A.; López-González, Maria J.; Muñoz Rodríguez, I.; Pozuelos, F. J.; Sánchez-Rivero, A.; Schlecker, M.; Quirrenbach, Andreas; Ribas, Ignasi; Reiners, Ansgar; Almenara, J.; Astudillo-Defru, N.; Azzaro, M.; Béjar, Victor J. S.; Bohemann, R.; Bonfils, X.; Bouchy, F.; Cifuentes, C.; Cortés-Contreras, M.; Delfosse, Xavier; Dreizler, Stefan; Forveille, Thierry; Hatzes, Artie P.; Henning, Thomas K.; Jeffers, Sandra V.; Kaminski, Adrian; Kürster, Martin; Lafarga, M.; Lodieu, Nicolas; Lovis, C.; Mayor, M.; Montes, David; Morales, Juan Carlos; Morales, Nicolás; Murgas, F.; Ortiz, José L.; Pepe, F.; Perdelwitz, V.; Pollaco, D.; Santos, N. C.; Schöfer, P.; Schweitzer, A.; Ségransan, N. C.; Shan, Y.; Stock, S.; Tal-Or, Lev; Udry, S.; Zapatero-Osorio, María Rosa; Zechmeister, Mathias (2021-05-28). "The CARMENES search for exoplanets around M dwarfs". Astronomy & Astrophysics. 650: A188. arXiv:2105.13785. doi:10.1051/0004-6361/202140633. S2CID 235248027.
  69. ^ "GJ 667 C". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  70. ^ "GJ 667 C d". Extrasolar Planets Encyclopaedia. Archived from the original on 2017-12-01. Retrieved 2018-03-22.
  71. ^ "GJ 667 C h". Extrasolar Planets Encyclopaedia. 2016-02-23. Archived from the original on 2017-12-01. Retrieved 2018-03-22.
  72. ^ Damasso, M.; Perger, M.; Almenara, J. M.; Nardiello, D.; Pérez-Torres, M.; Sozzetti, A.; Hara, N. C.; Quirrenbach, A.; Bonfils, X.; Osorio, M. R. Zapatero; Astudillo-Defru, N.; Hernández, J. I. González; Mascareño, A. Suárez; Amado, P. J.; Forveille, T.; Lillo-Box, J.; Alibert, Y.; Caballero, J. A.; Cifuentes, C.; Delfosse, X.; Figueira, P.; Galadí-Enríquez, D.; Hatzes, A. P.; Henning, Th; Kaminski, A.; Mayor, M.; Murgas, F.; Montes, D.; Pinamonti, M.; Reiners, A.; Ribas, I.; Béjar, V. J. S.; Schweitzer, A.; Zechmeister, M. (13 April 2022). "A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514". Astronomy & Astrophysics. 666: A187. arXiv:2204.06376. doi:10.1051/0004-6361/202243522. S2CID 248157318.
  73. ^ Vedantham, H. K.; Callingham, J. R.; Shimwell, T. W.; Tasse, C.; Pope, B. J. S.; Bedell, M.; Snellen, I.; Best, P.; Hardcastle, M. J.; Haverkorn, M.; Mechev, A.; O’Sullivan, S. P.; Röttgering, H. J. A.; White, G. J. (June 2020). "Coherent radio emission from a quiescent red dwarf indicative of star–planet interaction". Nature Astronomy. 4 (6): 577–583. arXiv:2002.08727. Bibcode:2020NatAs...4..577V. doi:10.1038/s41550-020-1011-9. S2CID 211204712.
  74. ^ Mahadevan, Suvrath; Stefánsson, Guðmundur; Robertson, Paul; Terrien, Ryan C.; Ninan, Joe P.; Holcomb, Rae J.; Halverson, Samuel; Cochran, William D.; Kanodia, Shubham; Ramsey, Lawrence W.; Wolszczan, Alexander; Endl, Michael; Bender, Chad F.; Diddams, Scott A.; Fredrick, Connor; Hearty, Fred; Monson, Andrew; Metcalf, Andrew J.; Roy, Arpita; Schwab, Christian (3 February 2021). "The Habitable-zone Planet Finder Detects a Terrestrial-mass Planet Candidate Closely Orbiting Gliese 1151: The Likely Source of Coherent Low-frequency Radio Emission from an Inactive Star". The Astrophysical Journal Letters. 919 (1): L9. arXiv:2102.02233. Bibcode:2021ApJ...919L...9M. doi:10.3847/2041-8213/abe2b2. S2CID 231802021.
  75. ^ Perger, M.; Ribas, I.; Anglada-Escudé, G.; Morales, J. C.; Amado, P. J.; Caballero, J. A.; Quirrenbach, A.; Reiners, A.; Béjar, V. J. S.; Dreizler, S.; Galadí-Enríquez, D.; Hatzes, A. P.; Henning, Th.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Montes, D.; Pallé, E.; Rodríguez-López, C.; Schweitzer, A.; Zapatero Osorio, M. R.; Zechmeister, M. (2021), "The CARMENES search for exoplanets around M dwarfs, No evidence for a super-Earth in a 2-day orbit around GJ 1151", Astronomy & Astrophysics, 649: L12, arXiv:2103.10216, Bibcode:2021A&A...649L..12P, doi:10.1051/0004-6361/202140786, S2CID 126038821
  76. ^ Blanco-Pozo, J.; Perger, M.; et al. (March 2023). "The CARMENES search for exoplanets around M dwarfs. A long-period planet around GJ 1151 measured with CARMENES and HARPS-N data". Astronomy & Astrophysics. 671: A50. arXiv:2301.04442. Bibcode:2023A&A...671A..50B. doi:10.1051/0004-6361/202245053.
  77. ^ Trifonov, T.; Caballero, J. A.; Morales, J. C.; Seifahrt, A.; Ribas, I.; Reiners, Ansgar; Bean, J. L.; Luque, R.; Parviainen, H.; Pallé, E.; Stock, S.; Zechmeister, M.; Amado, P. J.; Anglada-Escudé, G.; Azzaro, M.; Barclay, T.; Béjar, V. J. S.; Bluhm, P.; Casasayas-Barris, N.; Cifuentes, C.; Collins, K. A.; Collins, K. I.; Cortés-Contreras, M.; de Leon, J.; Dreizler, S.; Dressing, C. D.; Esparza-Borges, E.; Espinoza, N.; Fausnaugh, M.; Fukui, A.; Hatzes, A. P.; Hellier, C.; Henning, Th.; Henze, C. E.; Herrero, E.; Jeffers, S. V.; Jenkins, J. M.; Jensen, E. L. N.; Kaminski, A.; Kasper, D.; Kossakowski, D.; Kürster, M.; Lafarga, M.; Latham, D. W.; Mann, A. W.; Molaverdikhani, K.; Montes, D.; Montet, B. T.; Murgas, F.; Narita, N.; Oshagh, M.; Passegger, V. M.; Pollacco, D.; Quinn, S. N.; Quirrenbach, A.; Ricker, G. R.; Rodríguez López, C.; Sanz-Forcada, J.; Schwarz, R. P.; Schweitzer, A.; Seager, S.; Shporer, A.; Stangret, M.; Stürmer, J.; Tan, T. G.; Tenenbaum, P.; Twicken, J. D.; Vanderspek, R.; Winn, J. N. (5 March 2021). "A nearby transiting rocky exoplanet that is suitable for atmospheric investigation". Science. 371 (6533): 1038–1041. arXiv:2103.04950. Bibcode:2021Sci...371.1038T. doi:10.1126/science.abd7645. PMID 33674491. S2CID 232124642.
  78. ^ Affer, L.; Damasso, M.; Micela, G.; Poretti, E.; Scandariato, G.; Maldonado, J.; Lanza, A. F.; Covino, E.; Rubio, A. Garrido; Hernandez, J. I. Gonzalez; Gratton, R.; Leto, G.; Maggio, A.; Perger, M.; Sozzetti, A.; Mascareno, A. Suarez; Bonomo, A. S.; Borsa, F.; Claudi, R.; Cosentino, R.; Desidera, S.; Molinari, E.; Pedani, M.; Pinamonti, M.; Rebolo, R.; Ribas, I.; Toledo-Padron, B. (16 January 2019). "HADES RV programme with HARPS-N at TNG. X. A super-Earth around the M dwarf Gl686". Astronomy & Astrophysics. A193: 622. arXiv:1901.05338. Bibcode:2019A&A...622A.193A. doi:10.1051/0004-6361/201834868. S2CID 118863481.
  79. ^ "GJ 1289". SIMBAD. Centre de données astronomiques de Strasbourg.
  80. ^ a b Moutou, C.; Ould-Elhkim, M.; Donati, J.-F.; Charpentier, P.; Cadieux, C.; Delfosse, X.; Artigau, E.; Arnold, L.; Baruteau, C. (2024-06-14), Characterizing planetary systems with SPIRou: a temperate sub-Neptune exoplanet orbiting the nearby fully-convective star GJ 1289 and a candidate around GJ 3378, arXiv:2406.10384
  81. ^ Bauer, F. F.; Zechmeister, M.; Kaminski, A.; López, C. Rodríguez; Caballero, J. A.; Azzaro, M.; Stahl, O.; Kossakowski, D.; Quirrenbach, A.; Jarque, S. Becerril; Rodríguez, E.; Amado, P. J.; Seifert, W.; Reiners, Ansgar; Schäfer, S.; Ribas, I.; Béjar, V. J. S.; Cortés-Contreras, M.; Dreizler, S.; Hatzes, A.; Henning, T.; Jeffers, S. V.; Kürster, M.; Lafarga, M.; Montes, D.; Morales, J. C.; Schmitt, J. H. M. M.; Schweitzer, A.; Solano, E. (2 June 2020). "The CARMENES search for exoplanets around M dwarfs. Measuring precise radial velocities in the near infrared: the example of the super-Earth CD Cet b". Astronomy and Astrophysics. 640: A50. arXiv:2006.01684. Bibcode:2020A&A...640A..50B. doi:10.1051/0004-6361/202038031. S2CID 219179889.
  82. ^ "HD 192310". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  83. ^ "GJ 849". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  84. ^ "GJ 433". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  85. ^ "HD 102365". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  86. ^ Lam, Kristine W. F.; Csizmadia, Szilárd; Astudillo-Defru, Nicola; Bonfils, Xavier; Gandolfi, Davide; Padovan, Sebastiano; Esposito, Massimiliano; Hellier, Coel; Hirano, Teruyuki; Livingston, John; Murgas, Felipe; Smith, Alexis M. S.; Collins, Karen A.; Mathur, Savita; Garcia, Rafael A.; Howell, Steve B.; Santos, Nuno C.; Dai, Fei; Ricker, George R.; Vanderspek, Roland; Latham, David W.; Seager, Sara; Winn, Joshua N.; Jenkins, Jon M.; Albrecht, Simon; Almenara, Jose M.; Artigau, Etienne; Barragán, Oscar; Bouchy, François; Cabrera, Juan; Charbonneau, David; Chaturvedi, Priyanka; Chaushev, Alexander; Christiansen, Jessie L.; Cochran, William D.; De Meideiros, José R.; Delfosse, Xavier; Díaz, Rodrigo F.; Doyon, René; Eigmüller, Philipp; Figueira, Pedro; Forveille, Thierry; Fridlund, Malcolm; Gaisné, Guillaume; Goffo, Elisa; Georgieva, Iskra; Grziwa, Sascha; Guenther, Eike; Hatzes, Artie P.; Johnson, Marshall C.; Kabáth, Petr; Knudstrup, Emil; Korth, Judith; Lewin, Pablo; Lissauer, Jack J.; Lovis, Christophe; Luque, Rafael; Melo, Claudio; Morgan, Edward H.; Morris, Robert; Mayor, Michel; Narita, Norio; Osborne, Hannah L. M.; Palle, Enric; Pepe, Francesco; Persson, Carina M.; Quinn, Samuel N.; Rauer, Heike; Redfield, Seth; Schlieder, Joshua E.; Ségransan, Damien; Serrano, Luisa M.; Smith, Jeffrey C.; Šubjak, Ján; Twicken, Joseph D.; Udry, Stéphane; Van Eylen, Vincent; Vezie, Michael (3 December 2021). "GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star" (PDF). Science. 374 (6572): 1271–1275. arXiv:2112.01309. Bibcode:2021Sci...374.1271L. doi:10.1126/science.aay3253. PMID 34855492. S2CID 244799656.
  87. ^ Goffo, Elisa; Gandolfi, Davide; et al. (September 2023). "Company for the ultra-high density, ultra-short period sub-Earth GJ 367 b: discovery of two additional low-mass planets at 11.5 and 34 days". The Astrophysical Journal Letters. 955 (1): L3. arXiv:2307.09181. Bibcode:2023ApJ...955L...3G. doi:10.3847/2041-8213/ace0c7.
  88. ^ Wohler, B.; Winn, J. W.; Wang, S. X.; Twicken, J. D.; Teske, J.; Tamura, M.; Shectman, S. A.; Rowden, P.; Ricker, G. R.; Ribas, I.; Pedraz, S.; Nagel, E.; Murgas, F.; Morales, J. C.; Montañés-Rodríguez, P.; McDermott, S.; Latham, D. W.; Lafarga, M.; Kotani, T.; Klahr, H.; Kaminski, A.; Jenkins, J. M.; Feng, F.; Dynes, S.; Dressing, C. D.; Crane, J. D.; Collins, K. I.; Collins, K. A.; Chen, G.; Caldwell, D. A.; Butler, R. P.; Burt, J.; Burke, C. J.; Bluhm, P.; Bauer, F. F.; Batalha, N. E.; Anderson, D. R.; Amado, P. J.; Zechmeister, M.; Osorio, M. R. Zapatero; Trifonov, T.; Stock, S.; Schlecker, M.; Rodríguez-López, C.; Reiners, Ansgar; Reffert, S.; Quirrenbach, A.; Parviainen, H.; Oshagh, M.; Ofir, A.; Nowak, G.; Narita, N.; Montes, D.; Molaverdikhani, K.; Kürster, M.; Kaltenegger, L.; Jeffers, S. V.; Henning, T.; Hellier, C.; Hatzes, A.; Díez-Alonso, E.; Cortés-Contreras, M.; Caballero, J. A.; Béjar, V. J. S.; Anglada-Escudé, G.; Espinoza, N.; Kemmer, J.; Dreizler, S.; Kossakowski, D.; Pallé, E.; Luque, R. (29 April 2019). "A planetary system around the nearby M dwarf Gl 357 including a transiting hot Earth-sized planet optimal for atmospheric characterisation". Astronomy & Astrophysics. A39: 628. arXiv:1904.12818. Bibcode:2019A&A...628A..39L. doi:10.1051/0004-6361/201935801. S2CID 139102184.
  89. ^ "HD 285968". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  90. ^ "GJ 176 c". Extrasolar Planets Encyclopaedia. 2010-12-17. Archived from the original on 2014-02-23. Retrieved 2014-05-20.
  91. ^ Morales, J. C.; et al. (2019). "A giant exoplanet orbiting a very-low-mass star challenges planet formation models". Science. 365 (6460): 1441–1445. arXiv:1909.12174. Bibcode:2019Sci...365.1441M. doi:10.1126/science.aax3198. ISSN 0036-8075. PMID 31604272. S2CID 202888425.
  92. ^ Kossakowski, D.; Kürster, M.; et al. (January 2023). "The CARMENES search for exoplanets around M dwarfs, Wolf 1069 b: Earth-mass planet in the habitable zone of a nearby, very low-mass star". Astronomy & Astrophysics. 670. arXiv:2301.02477. Bibcode:2023A&A...670A..84K. doi:10.1051/0004-6361/202245322.
  93. ^ Plavchan, Peter; Barclay, Thomas; Gagné, Jonathan; et al. (2020). "A planet within the debris disk around the pre-main-sequence star AU Microscopii". Nature. 582 (7813): 497–500. arXiv:2006.13248. Bibcode:2020Natur.582..497P. doi:10.1038/s41586-020-2400-z. PMC 7323865. PMID 32581383. S2CID 220042005.
  94. ^ Martioli, E.; et al. (2021). "New constraints on the planetary system around the young active star AU Mic. Two transiting warm Neptunes near mean-motion resonance". Astronomy & Astrophysics. A177: 649. arXiv:2012.13238. Bibcode:2021A&A...649A.177M. doi:10.1051/0004-6361/202040235. S2CID 229371309.
  95. ^ Wittrock, Justin M.; et al. (2023), "Validating AU Microscopii d with Transit Timing Variations", The Astronomical Journal, 166 (6): 232, arXiv:2302.04922, Bibcode:2023AJ....166..232W, doi:10.3847/1538-3881/acfda8
  96. ^ Donati, J-F; Cristofari, P I; Finociety, B; et al. (24 April 2023). "The magnetic field and multiple planets of the young dwarf AU Mic". Monthly Notices of the Royal Astronomical Society. 525: 455–475. arXiv:2304.09642. doi:10.1093/mnras/stad1193. ISSN 0035-8711. S2CID 258212637.
  97. ^ Gillon, M.; et al. (2007). "Detection of transits of the nearby hot Neptune GJ 436 b". Astronomy and Astrophysics. 472 (2): L13–L16. arXiv:0705.2219. Bibcode:2007A&A...472L..13G. doi:10.1051/0004-6361:20077799. S2CID 13552824.
  98. ^ Lanotte, A. A.; et al. (2014). "A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b". Astronomy and Astrophysics. 572. A73. arXiv:1409.4038. Bibcode:2014A&A...572A..73L. doi:10.1051/0004-6361/201424373. S2CID 55405647.
  99. ^ Perger, M.; et al. (April 2019). "Gliese 49: Activity evolution and detection of a super-Earth". Astronomy & Astrophysics. 624: 19. arXiv:1903.04808. Bibcode:2019A&A...624A.123P. doi:10.1051/0004-6361/201935192. ISSN 0004-6361. S2CID 85497416. A123.
  100. ^ Gorrini, P.; Kemmer, J.; et al. (December 2023). "Planetary companions orbiting the M dwarfs GJ 724 and GJ 3988. A CARMENES and IRD collaboration". Astronomy & Astrophysics. 680: A28. arXiv:2310.05599. Bibcode:2023A&A...680A..28G. doi:10.1051/0004-6361/202347108.
  101. ^ Luque, R.; et al. (2022). "The HD 260655 system: Two rocky worlds transiting a bright M dwarf at 10 pc". Astronomy & Astrophysics. 664: A199. arXiv:2204.10261. Bibcode:2022A&A...664A.199L. doi:10.1051/0004-6361/202243834. S2CID 248300168.
  102. ^ Lee, Rhodi (2015-09-18). "Want To Name An Exoplanet? Here's Your Chance". Tech Times. Archived from the original on 2015-09-07. Retrieved 2015-09-17.
  103. ^ Bartlett, Jennifer L; Ianna, Philip A; Begam, Michael C (2009). "A Search for Astrometric Companions to Stars in the Southern Hemisphere". Publications of the Astronomical Society of the Pacific. 121 (878): 365. Bibcode:2009PASP..121..365B. doi:10.1086/599044. S2CID 122529477.
  104. ^ Rajpaul, Vinesh (19 October 2015). "Ghost in the time series: no planet for Alpha Cen B". Monthly Notices of the Royal Astronomical Society: Letters. 456 (1): L6–L10. arXiv:1510.05598. Bibcode:2016MNRAS.456L...6R. doi:10.1093/mnrasl/slv164.
  105. ^ Ribas, I.; Tuomi, M.; Reiners, Ansgar; Butler, R. P.; et al. (2018-11-14). "A candidate super-Earth planet orbiting near the snow line of Barnard's star" (PDF). Nature. 563 (7731). Holtzbrinck Publishing Group: 365–368. arXiv:1811.05955. Bibcode:2018Natur.563..365R. doi:10.1038/s41586-018-0677-y. hdl:2299/21132. ISSN 0028-0836. OCLC 716177853. PMID 30429552. S2CID 256769911. Archived (PDF) from the original on 2019-03-26.
  106. ^ Lubin, Jack; Robertson, Paul; Stefansson, Gudmundur; et al. (15 July 2021). "Stellar Activity Manifesting at a One-year Alias Explains Barnard b as a False Positive". The Astronomical Journal. 162 (2). American Astronomical Society: 61. arXiv:2105.07005. Bibcode:2021AJ....162...61L. doi:10.3847/1538-3881/ac0057. ISSN 0004-6256. S2CID 234741985.
  107. ^ Bortle, Anna; et al. (2021). "A Gaussian Process Regression Reveals No Evidence for Planets Orbiting Kapteyn's Star". The Astronomical Journal. 161 (5): 230. arXiv:2103.02709. Bibcode:2021AJ....161..230B. doi:10.3847/1538-3881/abec89. S2CID 232110395.
  108. ^ Farihi, J.; Becklin, E. E.; Macintosh, B. A. (June 2004). "Mid-Infrared Observations of van Maanen 2: No Substellar Companion". Astrophysical Journal Letters. 608 (2): L109–L112. arXiv:astro-ph/0405245. Bibcode:2004ApJ...608L.109F. doi:10.1086/422502. S2CID 17166073.
  109. ^ Heinze, A. N.; Hinz, Philip M.; Sivanandam, Suresh; et al. (May 2010). "Constraints on Long-period Planets from an L'- and M-band Survey of Nearby Sun-like Stars: Observations". The Astrophysical Journal. 714 (2): 1551–1569. arXiv:1003.5340. Bibcode:2010ApJ...714.1551H. doi:10.1088/0004-637X/714/2/1551. S2CID 119199321.
  110. ^ Carleo, I.; et al. (June 2020). "The GAPS Programme at TNG. XXI. A GIARPS case study of known young planetary candidates: confirmation of HD 285507 b and refutation of AD Leonis b". Astronomy & Astrophysics. 638: A5. arXiv:2002.10562. Bibcode:2020A&A...638A...5C. doi:10.1051/0004-6361/201937369. S2CID 211296466.
  111. ^ Ma, Bo; Ge, Jian; Muterspaugh, Matthew; Singer, Michael A; Henry, Gregory W; González Hernández, Jonay I; Sithajan, Sirinrat; Jeram, Sarik; Williamson, Michael; Stassun, Keivan; Kimock, Benjamin; Varosi, Frank; Schofield, Sidney; Liu, Jian; Powell, Scott; Cassette, Anthony; Jakeman, Hali; Avner, Louis; Grieves, Nolan; Barnes, Rory; Zhao, Bo; Gilda, Sankalp; Grantham, Jim; Stafford, Greg; Savage, David; Bland, Steve; Ealey, Brent (October 2018). "The first super-Earth detection from the high cadence and high radial velocity precision Dharma Planet Survey". Monthly Notices of the Royal Astronomical Society. 480 (2): 2411–2422. arXiv:1807.07098. Bibcode:2018MNRAS.480.2411M. doi:10.1093/mnras/sty1933. S2CID 54871108.
  112. ^ Burrows, Abigail; Halverson, Samuel; et al. (April 2024). "The Death of Vulcan: NEID Reveals That the Planet Candidate Orbiting HD 26965 Is Stellar Activity". The Astronomical Journal. 167 (5): 243. arXiv:2404.17494. Bibcode:2024AJ....167..243B. doi:10.3847/1538-3881/ad34d5.
  113. ^ "VB 10 b". Extrasolar Planets Encyclopaedia. Archived from the original on 2015-09-29. Retrieved 2015-09-17.
  114. ^ Gáspár, András; Rieke, George H. (April 20, 2020). "New HST data and modeling reveal a massive planetesimal collision around Fomalhaut". PNAS. 117 (18): 9712–9722. arXiv:2004.08736. Bibcode:2020PNAS..117.9712G. doi:10.1073/pnas.1912506117. PMC 7211925. PMID 32312810. S2CID 215827666.
  115. ^ Hurt, Spencer A.; Quinn, Samuel N.; Latham, David W.; Vanderburg, Andrew; Esquerdo, Gilbert A.; Calkins, Michael L.; Berlind, Perry; Angus, Ruth; Latham, Christian A.; Zhou, George (21 January 2021). "A Decade of Radial-velocity Monitoring of Vega and New Limits on the Presence of Planets". The Astronomical Journal. 161 (4): 157. arXiv:2101.08801. Bibcode:2021AJ....161..157H. doi:10.3847/1538-3881/abdec8. S2CID 231693198.
  116. ^ Wagner, K.; Boehle, A.; Pathak, P.; Kasper, M.; Arsenault, R.; Jakob, G.; Käufl, U.; Leveratto, S.; Maire, A.-L.; Pantin, E.; Siebenmorgen, R. (2021-02-10). "Imaging low-mass planets within the habitable zone of α Centauri". Nature Communications. 12 (1): 922. arXiv:2102.05159. Bibcode:2021NatCo..12..922W. doi:10.1038/s41467-021-21176-6. ISSN 2041-1723. PMC 7876126. PMID 33568657.
  117. ^ Abuter, R.; et al. (GRAVITY Collaboration) (May 2024). "Astrometric detection of a Neptune-mass candidate planet in the nearest M-dwarf binary system GJ65 with VLTI/GRAVITY". Astronomy & Astrophysics. 685: L9. arXiv:2404.08746. Bibcode:2024A&A...685L...9G. doi:10.1051/0004-6361/202449547.
  118. ^ Boss, Alan P.; Butler, R. Paul; Hubbard, William B.; et al. (2007). "Working Group on Extrasolar Planets". Proceedings of the International Astronomical Union. 1 (T26A): 183. Bibcode:2007IAUTA..26..183B. doi:10.1017/S1743921306004509.
  119. ^ "SCR 1845 b". Extrasolar Planets Encyclopaedia. 2012-04-13. Archived from the original on 2015-10-01. Retrieved 2015-09-17.
  120. ^ "SDSS 141624 b". Extrasolar Planets Encyclopaedia. 2010-01-18. Archived from the original on 2014-02-23. Retrieved 2014-05-20.
  121. ^ "WISE 1217+16A b". Extrasolar Planets Encyclopaedia. Archived from the original on 2017-06-12. Retrieved 2014-05-17.
  122. ^ Clavin, Whitney; Harrington, J. D. (2014-04-25). "NASA's Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun". NASA. Archived from the original on 2014-04-26. Retrieved 2015-09-17.
  123. ^ Lucas, P. W.; Tinney, C. G.; Burningham, B.; et al. (2010). "The discovery of a very cool, very nearby brown dwarf in the Galactic plane". Monthly Notices of the Royal Astronomical Society. 408 (1): L56–L60. arXiv:1004.0317. Bibcode:2010MNRAS.408L..56L. doi:10.1111/j.1745-3933.2010.00927.x. S2CID 16032606.
  124. ^ Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R.; et al. (2011). "The Discovery of Y Dwarfs using Data from the Wide-field Infrared Survey Explorer (WISE)". The Astrophysical Journal. 743 (1): 50. arXiv:1108.4678. Bibcode:2011ApJ...743...50C. doi:10.1088/0004-637X/743/1/50. S2CID 286881.
  125. ^ "Astronomers discover a nearby free-range planet with incredible magne". 3 August 2018.
[edit]