京é½å¤§å¦å»å¦é¨ / æ±äº¬å¤§å¦å¤§å¦é¢æ°é ååµæç§å¦ç 究ç§ãããä¸æµ¦ å²³[è¬æ¼è ] / éå£ æ[ãã¼ãä½æè ]ã(Miura,Takashi /)
京é½å¤§å¦å»å¦é¨ / æ±äº¬å¤§å¦å¤§å¦é¢æ°é ååµæç§å¦ç 究ç§ãããä¸æµ¦ å²³[è¬æ¼è ] / éå£ æ[ãã¼ãä½æè ]ã(Miura,Takashi /)
This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalise
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}