注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
電通デジタルでデータサイエンティストを務める吉田です。 本記事では、機械学習においてモデル学習時点... 電通デジタルでデータサイエンティストを務める吉田です。 本記事では、機械学習においてモデル学習時点でのデータと推論時点でのデータが経時的に乖離を起こしていく、いわゆるデータドリフトの検知を自動化するために構築したワークフローについてご紹介いたします。 データドリフトによる機械学習モデルの劣化とは機械学習モデルを実運用していく際に課題になる事象の1つとして、データドリフトの問題があります。 一般的に、機械学習ではいくつかの特徴量Xに対する目的変数Yとの隠れた関係を定式化します。XとYの関係は時間が経つにつれて変化していくことがしばしばあり、これに伴って一度作成したモデルの推論精度も低下していきます。 簡単な例として、あるWebサービスにおいてサイト上の行動ログを元にユーザーごとにコンバージョンの発生を予測する機械学習モデルを作成したとします。このモデルは、「平均的に10分以上閲覧しているユー
2021/06/09 リンク