跳转到内容

景天科

维基百科,自由的百科全书

景天科
长药八宝
科学分类 编辑
界: 植物界 Plantae
演化支 维管植物 Tracheophyta
演化支 被子植物 Angiosperms
演化支 真双子叶植物 Eudicots
目: 虎耳草目 Saxifragales
科: 景天科 Crassulaceae
DC.
模式属
青锁龙属 Crassula

詳見內文[1]

景天科(Crassulaceae),是虎耳草目的一,为多年生草本或低矮灌木,原产于世界温暖干燥地区,北半球大部分区域均有分布,约有341426,其中多种被人工培育为观赏花卉品种

形態

[编辑]

植物为多年生肉质草本或较低矮的灌木,叶、根、茎等营养器官常具红色色素,植株表面的角质层十分多样,气孔保卫细胞由两个较大和一个较小的细胞包围。叶多肥厚多汁,叶缘常有泌水孔。花小,常为四或五基数,心皮基部合生,常有腺着生,上部多呈不同程度的分离,侧膜胎座,每心皮有一至多枚胚珠柱头分裂。果实类型为蓇葖果

生理

[编辑]

大部分景天科植物均采用景天酸代謝(以下简称CAM)途径进行碳固定,该光合途径于1812年首次在景天科的伽蓝菜属中被发现,因而得名。CAM植物與一般的C3类植物C4类植物在气孔开合节律、水分利用、叶细胞酸度等生理表征上都有所不同。但CAM物种并非景天科特有。自CAM被发现以来,科内的多个属均被证明能够进行景天酸代谢,而对各个物种更加具体的生理表征量化描述也逐年被发表。

CAM物种还可进一步细分为兼性CAM和专性CAM两类。专性CAM物种在所有环境条件下都采用CAM策略。兼性CAM物种则仅在干旱等特定环境条件下启用CAM,而其它时候采取在植物界中更为常见的C3途径。目前在该科中发现的一种较特殊的兼性CAM现象来自一个名为'Tom Thumb'的长寿花园艺品种,其仅在短日照环境下进行景天酸代谢[2]

该科中用于CAM相关研究最常用的模式物种多来自伽蓝菜属。2017年,专性CAM物种玉吊钟的基因组被发表[3],为景天科中首个被从基因组层面描述其生理代谢特性的物种,两年后白景天英语Sedum album的基因组及光合作用相关基因表达规律也被发表[4]

演化

[编辑]

景天科起源非洲南部,隨後向北擴散到地中海地區,再蔓延至亞洲東歐北歐,最後擴展至北美[5]

分类

[编辑]

景天科最初在1930年被Berger描述時包括有六個亞科[6],分別是:

其後此分類系统历经多次修訂,各版本的亞科数從兩個到四個不等[7]。20世紀末至21世紀初,植物分類學逐漸步入利用遺傳學信息建立類群演化歷史的分子係統發生時代,多項研究發現Berger于1930年發表的分類係統中,除青鎖龍亞科和伽藍菜亞科之外,其餘四個亞科都不是單係群,違背了現代係統分類學的單係原則,因此需要修訂。1995-2001年間發表的三版基於葉綠體DNA片段的係統樹[8][9][10]均顯示景天科中有7個主要單係演化支,而2008年基於DNA片段的係統樹則發現了第八個演化支[11]

目前較常用[12]的一个系统将该科划为三亞科,於2007年由Thiede和Eggli確立,其根据为整合上述所有分子數據(包括Mayuzumi在2008年才正式發表的數據)所建的係統樹。

基于Thiede和Eggli (2007)
的景天科三亚科演化关系[13]
景天科 Crassulaceae

青鎖龍亞科 Crassuloideae

伽藍菜亞科 Kalanchoideae

長生草亞科 Sempervivoideae


以下列出三亞科系統中包含的和屬:

长生草亚科 Sempervivoideae

[编辑]
佛甲草 Sedum lineare

八宝族 Telephieae

[编辑]

= Hylotelephium clade

脐景天族 Umbiliceae

[编辑]

= Rhodiola clade

长生草族 Semperviveae

[编辑]

= Sempervivum clade

莲花掌族 Aeonieae

[编辑]

= Aeonium clade

景天族 Sedeae

[编辑]

Leucosedum clade

景天科青锁龙属的秋火莲Crassula capitella

Acre clade


伽蓝菜亚科 Kalanchoideae

[编辑]

= Kalanchoe clade


青锁龙亚科 Crassuloideae

[编辑]

= Crassula clade

應用

[编辑]
開花的擬石蓮花屬人工雜交種“黑王子”

景天科植物植株矮小,由于是肉质,耗水肥很少,因此极易种植观赏。景天科植物由于其矮小抗风,又不需要大量水肥,耐污染,因此成为目前比较流行的屋顶绿化的首选植物。

参考资料

[编辑]
  1. ^ List of Genera in CRASSULACEAE. Angiosperm Phylogeny Website. Missouri Botanical Gardens. [2017-10-31]. (原始内容存档于2017-10-27). 
  2. ^ Brulfert, J.; Kluge, M.; Güçlü, S.; Queiroz, O. Interaction of Photoperiod and Drought as CAM Inducing Factors in Kalanchoë blossfeldiana Poelln., cv. Tom Thumb.. Journal of Plant Physiology. 1988-09-01, 133 (2): 222–227. doi:10.1016/S0176-1617(88)80141-X. 
  3. ^ Yang, Xiaohan; Hu, Rongbin; Yin, Hengfu; Jenkins, Jerry; Shu, Shengqiang; Tang, Haibao; Liu, Degao; Weighill, Deborah A.; Cheol Yim, Won; Ha, Jungmin; Heyduk, Karolina; Goodstein, David M.; Guo, Hao-Bo; Moseley, Robert C.; Fitzek, Elisabeth; Jawdy, Sara; Zhang, Zhihao; Xie, Meng; Hartwell, James; Grimwood, Jane; Abraham, Paul E.; Mewalal, Ritesh; Beltrán, Juan D.; Boxall, Susanna F.; Dever, Louisa V.; Palla, Kaitlin J.; Albion, Rebecca; Garcia, Travis; Mayer, Jesse A.; Don Lim, Sung; Man Wai, Ching; Peluso, Paul; Van Buren, Robert; De Paoli, Henrique Cestari; Borland, Anne M.; Guo, Hong; Chen, Jin-Gui; Muchero, Wellington; Yin, Yanbin; Jacobson, Daniel A.; Tschaplinski, Timothy J.; Hettich, Robert L.; Ming, Ray; Winter, Klaus; Leebens-Mack, James H.; Smith, J. Andrew C.; Cushman, John C.; Schmutz, Jeremy; Tuskan, Gerald A. The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nature Communications. 2017-12-01, 8 (1). doi:10.1038/s41467-017-01491-7. 
  4. ^ Wai, Ching Man; Weise, Sean E.; Ozersky, Philip; Mockler, Todd C.; Michael, Todd P.; VanBuren, Robert. Time of day and network reprogramming during drought induced CAM photosynthesis in Sedum album. PLOS Genetics. 2019-06-14, 15 (6): e1008209. doi:10.1371/journal.pgen.1008209. 
  5. ^ Phylogenetic relationships and evolution of Crassulaceae inferred from matK sequence data1
  6. ^ Berger, A. Crassulacaeae. Engler A., and Prantl, K. (编). Die naturlichen Pflanzenfamilien [自然植物的科] 18A. Leipzig (魏瑪共和國): Verlag von WEngelmann. 1930: 352–483 (德语). 
  7. ^ Gontcharova, S. B. and Gontcharov, A. A., Molecular Phylogeny and Systematics of Flowering Plants of the Family Crassulaceae DC., Molecular Biology, 2008, 43 (5): 794–803, doi:10.1134/S0026893309050112 
  8. ^ t' Hart, H.; U. Eggli. Infrafamilial and generic classification of the Crassulaceae. 1995: 159–172. 
  9. ^ Van Ham, R; Hart, H. Phylogenetic relationships in the Crassulaceae inferred from chloroplast DNA restriction-site variation.. American journal of botany. 1998-01, 85 (1): 123. PMID 21684886. 
  10. ^ Mort, ME; Soltis, DE; Soltis, PS; Francisco-Ortega, J; Santos-Guerra, A. Phylogenetic relationships and evolution of Crassulaceae inferred from matK sequence data.. American journal of botany. 2001-01, 88 (1): 76–91. PMID 11159129. 
  11. ^ Mayuzumi, Shinzo; Ohba, Hideaki. The Phylogenetic Position of Eastern Asian Sedoideae (Crassulaceae) Inferred from Chloroplast and Nuclear DNA Sequences. Systematic Botany. 2004-07-01, 29 (3): 587–598. doi:10.1600/0363644041744329. 
  12. ^ Messerschmid, Thibaud F.E.; Klein, Johannes T.; Kadereit, Gudrun; Kadereit, Joachim W. Linnaeus's folly – phylogeny, evolution and classification of Sedum (Crassulaceae) and Crassulaceae subfamily Sempervivoideae. TAXON. 2020-10, 69 (5): 892–926. doi:10.1002/tax.12316. 
  13. ^ Thiede, J.; Eggli, U. Crassulaceae. Flowering Plants · Eudicots. 2007, 9: 83–118. doi:10.1007/978-3-540-32219-1_12. 

外部链接

[编辑]

延伸阅读

[编辑]

[在维基数据]

维基文库中的相关文本:欽定古今圖書集成·博物彙編·草木典·景天部》,出自陈梦雷古今圖書集成
维基文库中的相关文本:植物名實圖考·景天》,出自吳其濬《植物名實圖考》