药物递送

(重定向自药物输送

药物递送,或称药物输送(英語:Drug delivery),是指将药物化合物输送到至人体目标部位或靶器官以实现所需治疗效果的方法、制剂、储存体系、或相关生产技术[1][2]。研究药物递送通常运用药物制备、给药途径、位点靶向特异性、代谢毒性的相关原理,优化药物疗效和安全性,从而提高患者服药的便利性和依从性(Compliance)[3][4]。药物递送旨在通过将药物与不同的赋形剂、药物载体和药物装置形成制剂(Formulation),以改变药物的药物代谢动力学和药物特异性[5][6][7],并尤其提高药物的生物利用度和体内作用持续时间以改善药物的治疗效果[8]。药物递送研究还可侧重于提高服药的安全性,如疫苗接种和一些药物正在开发的微针贴片可降低针刺伤害的风险[4][9]

正在演示的喷鼻瓶。

药物递送是一个制剂给药途径高度结合的概念,其中给药途径常被认为是药物递送研究的一部分[10]。虽然给药途径一词通常情况下可以与药物递送互换,但实质上两者并不同。给药途径是指药物进入人体所采用的路径[11],而药物递送除此之外,还包括递送系统工程和经由相同途径递送药物的不同药物剂型和设备[12]。常见的给药途径包括口服肠胃外(注射)、舌下局部、透皮、鼻腔、眼部、直肠和阴道。除了以上主要的途径,还可经其他多种途径进行递送药物[13]

自1950年代第一个控释制剂获批以来,虽然新药开发数量呈现下降趋势,全新递送系统的研究却持续取得进展[14][15][16]。以下诸多因素促成了这种转变,首先是开发新药的高成本:2013年的一项综述表明,开发递送系统的成本仅为开发一个全新新药成本的10%[17]。而最近的一项研究发现,不考虑开发药物递送系统成本的前提下,2020年将一种新药推向市场成本的中位数为9.85亿美元[18]慢性病传染病患病率增加[16][19],以及对药物药理学、药代动力学和药效学的更多认识,让药物递送系统研究在药物研发领域变得越来越重要[5]

当前进展

编辑

目前在药物递送方面的进展包括:控释制剂、靶向递送、纳米药物、药物载体、3D打印和生物药物递送等方向[20][21]

纳米技术

编辑

纳米技术在药物递送领域正开展广泛的研究,其主要涉及在原子或亚原子水平上控制物料。纳米技术科可用于医学能源航空航天工程等诸多领域,在药物递送中的应用只是其用途之一。通过纳米技术过程,纳米粒可携带药物分子并将药物递送至身体的特定靶区域或靶器官。使用纳米技术进行药物递送有几个优点包括:精确做到对特定细胞的靶向递送,提高药物效力以及降低对靶向细胞的毒性。纳米粒还可以将疫苗携带并递送至传统递送方法难以到达的细胞中。然而,使用纳米颗粒进行药物递送仍存在一些技术难题。如其可能对环境产生有害影响。尽管存一些潜在的风险,纳米技术在药物递送中的应用仍然是未来研究中颇有前途的方向[22]

靶向递送

编辑

靶向药物递送是将药物递送至人体目标部位而不影响其他非目标组织的过程[23]。由于其在治疗癌症领域和其他慢性疾病领域的潜在优势,药物研发人员对靶向药物递送方向的研究越来越深入[24][25][26]。为了实现高效的靶向递送,设计的递送系统须避开人体对于外源性药物的防御机制,并通过循环将药物递送至目标作用部位[27]。当今对于许多药物载体已开展研究,以有效地对特定组织器官进行靶向给药,包括:脂质体纳米凝胶和其他纳米技术[28][24][29]

控释制剂

编辑

控释制剂(Controlled-release,CR)或其他改良释放制剂可以改变药物在人体中释放的速率和时间,以产生足够或持续有效的药物浓度[30]。第一个成功获批的控释制剂是于1950年代研发的药物右旋安非他命[31]。近期越来越多的控释制剂药物及通过皮肤缓慢吸收的透皮贴剂药物被批准上市[32]。至此,依据药物不同理化特性进行开发进行开发的控释制剂药物被不断得推向市场,如每隔数月只需一次给药的抗精神病药以及性激素长效注射剂[33][34]

自20世纪90年代后期以来,大多数关于控释制剂技术的研究都集中在使用纳米颗粒以降低药物清除率[31][35]

调节药物释放和药物零级释放

编辑

许多科学家致力于创造可以保持恒定药物水平并保持稳定血药浓度的口服制剂,即药物以零级速率释放的可能性。然而一些人体生理的特殊机制使得发明此类口服制剂颇具挑战性:由于肠道下部的吸收能力偏弱,因此当口服制剂从胃部移动到肠道时通常药物吸收速率会下降,而服药后制剂中释放的药物量会持续减少,以上两个因素导致人体对于药物的总吸收量会随着服药时间而降低。因此口服制剂做到药物零级释放非常不易,如药物苯丙醇胺盐酸盐通过新型制剂将稳定一致的血液浓度维持约16小时。[36]

生物药物的递送

编辑

生物药,如:多肽蛋白质抗体基因或其他具有生物成分的药物由于其分子体积较大或整个分子带有带有静电荷,通常会具有人体吸收不佳的问题,并且生物药物分子一旦进入人体就易被酶促降解[5][37]。由于生物药物以上的技术问题,近代药物研究人员一直努力在药物递送方面通过使用脂质体纳米颗粒、融合蛋白、蛋白笼纳米粒、或利用类毒素生物体输送等途径来解决生物药物递送难题[5][38][39][40][41]。如最近人们熟知的治疗COVID-19的mRNA疫苗,通过化学载体将大分子RNA(核糖核酸) 递送至细胞内对于RNA药物来说是最有效的,因为同时蛋白质也可经由此过程在体内递送至细胞中,而DNA分子通常在体外进行递送过程[42][43][44]。在各种给药途径中,口服给药以其良好的顺应性最受患者青睐。然而,对于大多数生物药物而言,口服给药的生物利用度通常太低而无法达到期待的治疗水平。先进的递送系统如:含有渗透增强剂或酶抑制剂的制剂系统,和基于脂质的纳米载体和微针可某种程度上提高这些生物药物的口服生物利用度[45] [46]

纳米粒给药系统的应用示例

编辑

药物递送系统经多年的研究,已经有一些良好的药物递送应用示例,如药物递送入:许多药物若分布至全身会发生不良反应。由于大脑存在血脑屏障因此对药物非常敏感,如将药物直接注射入容易造成较强的不良反应。随着针对脑部疾病开发的新制剂技术,包括阿兹海默症帕金森氏病,药物研发人员正研究将药物输送到大脑而并不影响健康组织的方法。近期,药物科学家已开发出可透过保护性血脑屏障并将药物直接递送至大脑的纳米颗粒,这可能是对于中枢神经系统疾病患者的福音[47][48]

参见

编辑

参考文献

编辑
  1. ^ Drug Delivery Systems (definition). www.reference.md. [2021-04-20]. (原始内容存档于2017-09-20). 
  2. ^ Rayaprolu, Bindhu Madhavi; Strawser, Jonathan J.; Anyarambhatla, Gopal. Excipients in parenteral formulations: selection considerations and effective utilization with small molecules and biologics. Drug Development and Industrial Pharmacy. 2018-10-03, 44 (10): 1565–1571 [2023-05-07]. ISSN 0363-9045. PMID 29863908. S2CID 46934375. doi:10.1080/03639045.2018.1483392. (原始内容存档于2022-03-06) (英语). 
  3. ^ Tiwari, Gaurav; Tiwari, Ruchi; Sriwastawa, Birendra; Bhati, L; Pandey, S; Pandey, P; Bannerjee, Saurabh K. Drug delivery systems: An updated review. International Journal of Pharmaceutical Investigation. 2012, 2 (1): 2–11. ISSN 2230-973X. PMC 3465154 . PMID 23071954. doi:10.4103/2230-973X.96920. 
  4. ^ 4.0 4.1 Li, Junwei; Zeng, Mingtao; Shan, Hu; Tong, Chunyi. Microneedle Patches as Drug and Vaccine Delivery Platform. Current Medicinal Chemistry. 2017-08-23, 24 (22): 2413–2422 [2023-05-07]. PMID 28552053. doi:10.2174/0929867324666170526124053. (原始内容存档于2021-10-24) (英语). 
  5. ^ 5.0 5.1 5.2 5.3 Tiwari, Gaurav; Tiwari, Ruchi; Sriwastawa, Birendra; Bhati, L; Pandey, S; Pandey, P; Bannerjee, Saurabh K. Drug delivery systems: An updated review. International Journal of Pharmaceutical Investigation. 2012, 2 (1): 2–11. ISSN 2230-973X. PMC 3465154 . PMID 23071954. doi:10.4103/2230-973X.96920. Tiwari, Gaurav; Tiwari, Ruchi; Sriwastawa, Birendra; Bhati, L; Pandey, S; Pandey, P; Bannerjee, Saurabh K (2012). "Drug delivery systems: An updated review"页面存档备份,存于互联网档案馆). International Journal of Pharmaceutical Investigation. 2 (1): 2–11. doi:10.4103/2230-973X.96920. ISSN 2230-973X. PMC 3465154页面存档备份,存于互联网档案馆. PMID 23071954页面存档备份,存于互联网档案馆).
  6. ^ Tekade, Rakesh K. (编). Basic fundamentals of drug delivery. 30 November 2018. ISBN 978-0-12-817910-9. OCLC 1078149382. 
  7. ^ Allen, T. M. Drug Delivery Systems: Entering the Mainstream. Science. 2004-03-19, 303 (5665): 1818–1822 [2023-05-07]. Bibcode:2004Sci...303.1818A. ISSN 0036-8075. PMID 15031496. S2CID 39013016. doi:10.1126/science.1095833. (原始内容存档于2023-02-10) (英语). 
  8. ^ Singh, Akhand Pratap; Biswas, Arpan; Shukla, Aparna; Maiti, Pralay. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduction and Targeted Therapy. 2019-08-30, 4 (1): 33. ISSN 2059-3635. PMC 6799838 . PMID 31637012. doi:10.1038/s41392-019-0068-3 (英语). 
  9. ^ Kim, Yeu-Chun; Park, Jung-Hwan; Prausnitz, Mark R. Microneedles for drug and vaccine delivery. Advanced Drug Delivery Reviews. November 2012, 64 (14): 1547–1568. PMC 3419303 . PMID 22575858. doi:10.1016/j.addr.2012.04.005 (英语). 
  10. ^ Nahler, Gerhard. Dictionary of Pharmaceutical Medicine. Springer, Cham. 2017: 96 [2023-05-07]. ISBN 978-3-319-50669-2. doi:10.1007/978-3-319-50669-2_4. (原始内容存档于2018-06-18). 
  11. ^ route of administration - definition of route of administration in the Medical dictionary - by the Free Online Medical Dictionary, Thesaurus and Encyclopedia.. 2011-06-12 [2021-04-20]. (原始内容存档于2011-06-12). 
  12. ^ Jain, Kewal K., Jain, Kewal K. , 编, An Overview of Drug Delivery Systems, Drug Delivery Systems, Methods in Molecular Biology (New York, NY: Springer New York), 2020, 2059: 1–54 [2021-04-20], ISBN 978-1-4939-9797-8, PMID 31435914, doi:10.1007/978-1-4939-9798-5_1 (英语) 
  13. ^ COMMON ROUTES OF DRUG ADMINISTRATION. media.lanecc.edu. [2021-04-20]. (原始内容存档于2021-10-15). 
  14. ^ Park, Kinam. Controlled drug delivery systems: Past forward and future back. Journal of Controlled Release. September 2014, 190: 3–8. PMC 4142099 . PMID 24794901. doi:10.1016/j.jconrel.2014.03.054 (英语). 
  15. ^ Scannell, Jack W.; Blanckley, Alex; Boldon, Helen; Warrington, Brian. Diagnosing the decline in pharmaceutical R&D efficiency. Nature Reviews Drug Discovery. March 2012, 11 (3): 191–200 [2023-05-07]. ISSN 1474-1776. PMID 22378269. S2CID 3344476. doi:10.1038/nrd3681. (原始内容存档于2023-03-29) (英语). 
  16. ^ 16.0 16.1 ltd, Research and Markets. Pharmaceutical Drug Delivery Market Forecast to 2027 - COVID-19 Impact and Global Analysis by Route of Administration; Application; End User, and Geography. www.researchandmarkets.com. [2021-04-24]. (原始内容存档于2022-05-19) (english). 
  17. ^ He, Huining; Liang, Qiuling; Shin, Meong Cheol; Lee, Kyuri; Gong, Junbo; Ye, Junxiao; Liu, Quan; Wang, Jingkang; Yang, Victor. Significance and strategies in developing delivery systems for bio-macromolecular drugs. Frontiers of Chemical Science and Engineering. 2013-12-01, 7 (4): 496–507. ISSN 2095-0187. S2CID 97347142. doi:10.1007/s11705-013-1362-1 (英语). 
  18. ^ Wouters, Olivier J.; McKee, Martin; Luyten, Jeroen. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018. JAMA. 2020-03-03, 323 (9): 844–853. ISSN 0098-7484. PMC 7054832 . PMID 32125404. doi:10.1001/jama.2020.1166 (英语). 
  19. ^ PricewaterhouseCoopers. Chronic diseases and conditions are on the rise. PwC. [2021-04-25]. (原始内容存档于2022-05-28) (en-gx). 
  20. ^ Li, Chong; Wang, Jiancheng; Wang, Yiguang; Gao, Huile; Wei, Gang; Huang, Yongzhuo; Yu, Haijun; Gan, Yong; Wang, Yongjun; Mei, Lin; Chen, Huabing. Recent progress in drug delivery. Acta Pharmaceutica Sinica B. 2019-11-01, 9 (6): 1145–1162. ISSN 2211-3835. PMC 6900554 . PMID 31867161. doi:10.1016/j.apsb.2019.08.003 (英语). 
  21. ^ Drug Delivery Systems. www.nibib.nih.gov. [2021-04-25]. (原始内容存档于2023-03-17). 
  22. ^ J. Wang, Y. Li, G. Nie, Multifunctional biomolecule nanostructures for cancer therapy, Nat. Rev. Mat. 6 (2021) 766–783
  23. ^ Tekade, Rakesh K.; Maheshwari, Rahul; Soni, Namrata; Tekade, Muktika; Chougule, Mahavir B. Nanotechnology for the Development of Nanomedicine. Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes. 2017-01-01: 3–61 [2023-05-07]. ISBN 9780128097175. doi:10.1016/B978-0-12-809717-5.00001-4. (原始内容存档于2023-03-14) (英语). 
  24. ^ 24.0 24.1 Madhusudana Rao, Kummara; Krishna Rao, Kummari S.V.; Ha, Chang-Sik. Functional stimuli-responsive polymeric network nanogels as cargo systems for targeted drug delivery and gene delivery in cancer cells. Design of Nanostructures for Theranostics Applications. 2018-01-01: 243–275 [2023-05-07]. ISBN 9780128136690. doi:10.1016/B978-0-12-813669-0.00006-3. (原始内容存档于2023-03-14) (英语). 
  25. ^ Patra, Jayanta Kumar; Das, Gitishree; Fraceto, Leonardo Fernandes; Campos, Estefania Vangelie Ramos; Rodriguez-Torres, Maria del Pilar; Acosta-Torres, Laura Susana; Diaz-Torres, Luis Armando; Grillo, Renato; Swamy, Mallappa Kumara; Sharma, Shivesh; Habtemariam, Solomon. Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology. December 2018, 16 (1): 71. ISSN 1477-3155. PMC 6145203 . PMID 30231877. doi:10.1186/s12951-018-0392-8 (英语). 
  26. ^ Amidon, Seth; Brown, Jack E.; Dave, Vivek S. Colon-Targeted Oral Drug Delivery Systems: Design Trends and Approaches. AAPS PharmSciTech. August 2015, 16 (4): 731–741. ISSN 1530-9932. PMC 4508299 . PMID 26070545. doi:10.1208/s12249-015-0350-9 (英语). 
  27. ^ Bertrand, Nicolas; Leroux, Jean-Christophe. The journey of a drug-carrier in the body: An anatomo-physiological perspective. Journal of Controlled Release. 2012-07-20, 161 (2): 152–163 [2023-05-07]. ISSN 0168-3659. PMID 22001607. doi:10.1016/j.jconrel.2011.09.098. (原始内容存档于2016-01-17) (英语). 
  28. ^ Drug Delivery Systems. www.nibib.nih.gov. [2021-04-25]. (原始内容存档于2023-03-17). "Drug Delivery Systems"页面存档备份,存于互联网档案馆). www.nibib.nih.gov. Retrieved 2021-04-25.
  29. ^ Rudokas, Mindaugas; Najlah, Mohammad; Alhnan, Mohamed Albed; Elhissi, Abdelbary. Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications. Medical Principles and Practice. 2016, 25 (2): 60–72. ISSN 1011-7571. PMC 5588529 . PMID 26938856. doi:10.1159/000445116 (英语). 
  30. ^ Perrie, Yvonne. Pharmaceutics- Drug Delivery and Targeting. FASTtrack. 2012: 1–19. ISBN 978-0-85711-059-6. 
  31. ^ 31.0 31.1 Park, Kinam. Controlled drug delivery systems: Past forward and future back. Journal of Controlled Release. September 2014, 190: 3–8. PMC 4142099 . PMID 24794901. doi:10.1016/j.jconrel.2014.03.054 (英语). Park, Kinam (September 2014). "Controlled drug delivery systems: Past forward and future back"页面存档备份,存于互联网档案馆). Journal of Controlled Release. 190: 3–8. doi:10.1016/j.jconrel.2014.03.054. PMC 4142099页面存档备份,存于互联网档案馆. PMID 24794901页面存档备份,存于互联网档案馆).
  32. ^ Yun, Yeon Hee; Lee, Byung Kook; Park, Kinam. Controlled Drug Delivery: Historical perspective for the next generation. Journal of Controlled Release. December 2015, 219: 2–7. PMC 4656096 . PMID 26456749. doi:10.1016/j.jconrel.2015.10.005 (英语). 
  33. ^ Lindenmayer, Jean-Pierre; Glick, Ira D.; Talreja, Hiteshkumar; Underriner, Michael. Persistent Barriers to the Use of Long-Acting Injectable Antipsychotics for the Treatment of Schizophrenia. Journal of Clinical Psychopharmacology. July 2020, 40 (4): 346–349. ISSN 1533-712X. PMID 32639287. S2CID 220412843. doi:10.1097/JCP.0000000000001225 (英语). 
  34. ^ Mishell, D. R. Pharmacokinetics of depot medroxyprogesterone acetate contraception. The Journal of Reproductive Medicine. May 1996, 41 (5 Suppl): 381–390 [2023-05-07]. ISSN 0024-7758. PMID 8725700. (原始内容存档于2022-10-07). 
  35. ^ Yun, Yeon Hee; Lee, Byung Kook; Park, Kinam. Controlled Drug Delivery: Historical perspective for the next generation. Journal of Controlled Release. December 2015, 219: 2–7. PMC 4656096 . PMID 26456749. doi:10.1016/j.jconrel.2015.10.005 (英语). Yun, Yeon Hee; Lee, Byung Kook; Park, Kinam (December 2015). "Controlled Drug Delivery: Historical perspective for the next generation"页面存档备份,存于互联网档案馆). Journal of Controlled Release. 219: 2–7. doi:10.1016/j.jconrel.2015.10.005. PMC 4656096页面存档备份,存于互联网档案馆. PMID 26456749页面存档备份,存于互联网档案馆).
  36. ^ Liu, Jue-Chen; Farber, Marlene; Chien, Yie W. Comparative Release of Phenylpropanolamine HC1 from Long-Acting Appetite Suppressant Products: Acutrim Vs. Dexatrim. Drug Development and Industrial Pharmacy. 1984-01-01, 10 (10): 1639–1661 [2023-05-09]. ISSN 0363-9045. doi:10.3109/03639048409039072. (原始内容存档于2022-06-09). 
  37. ^ Jain, Kewal K., Jain, Kewal K. , 编, An Overview of Drug Delivery Systems, Drug Delivery Systems, Methods in Molecular Biology (New York, NY: Springer New York), 2020, 2059: 1–54 [2021-04-20], ISBN 978-1-4939-9797-8, PMID 31435914, doi:10.1007/978-1-4939-9798-5_1 (英语) Jain, Kewal K. (2020), Jain, Kewal K. (ed.), "An Overview of Drug Delivery Systems", Drug Delivery Systems, Methods in Molecular Biology, New York, NY: Springer New York, vol. 2059, pp. 1–54, doi:10.1007/978-1-4939-9798-5_1, ISBN 978-1-4939-9797-8, PMID 31435914页面存档备份,存于互联网档案馆), S2CID 201275047, retrieved 2021-04-20
  38. ^ Strohl, William R. Current progress in innovative engineered antibodies. Protein & Cell. January 2018, 9 (1): 86–120. ISSN 1674-800X. PMC 5777977 . PMID 28822103. doi:10.1007/s13238-017-0457-8 (英语). 
  39. ^ Marschall, Andrea L J; Frenzel, André; Schirrmann, Thomas; Schüngel, Manuela; Dübel, Stefan. Targeting antibodies to the cytoplasm. mAbs. 2011, 3 (1): 3–16. ISSN 1942-0862. PMC 3038006 . PMID 21099369. doi:10.4161/mabs.3.1.14110. 
  40. ^ Uchida M, Maier B, Waghwani HK, Selivanovitch E, Pay SL, Avera J, Yun E, Sandoval RM, Molitoris BA, Zollman A, Douglas T, Hato, T. The archaeal Dps nanocage targets kidney proximal tubules via glomerular filtration. Journal of Clinical Investigation. September 2019, 129 (9): 3941–3951. PMC 6715384 . PMID 31424427. doi:10.1172/JCI127511 . 
  41. ^ Ruschig M, Marschall Andrea LJ. Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context. BioDrugs. 2023, 37 (2): 181–203. PMC 9893211 . PMID 36729328. doi:10.1007/s40259-023-00580-y . 
  42. ^ Zuris, John A; Thompson, DB; Shu, Y; Guilinger, JP; Bessen, JL; Hu, JH; Maeder, ML; Joung, JK; Chen, ZY; Liu, DR. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. Jan 2015, 33 (1): 73–80. PMC 4289409 . PMID 25357182. doi:10.1038/nbt.3081. 
  43. ^ Schoenmaker, Linde; Witzigmann, D; Kulkarni, JA; Verbeke, R; Kersten, G; Jiskoot, W; Crommelin, DJA. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J Pharm. April 2021, 601 (120586): 120586. PMC 8032477 . PMID 33839230. doi:10.1016/j.ijpharm.2021.120586. 
  44. ^ Marschall, Andrea L J. Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy. BioDrugs. October 2021, 25 (6): 643–671. PMC 8548996 . PMID 34705260. doi:10.1007/s40259-021-00500-y. 
  45. ^ Haddadzadegan, S; Dorkoosh, F; Bernkop-Schnürch, A. Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev. 2022, 182: 114097. PMID 34999121. doi:10.1016/j.addr.2021.114097. 
  46. ^ Bordbar-Khiabani A, Gasik M. Smart hydrogels for advanced drug delivery systems. International Journal of Molecular Sciences: 3665. doi:10.3390/ijms23073665. 
  47. ^ D.S.W. Benoit, C.T. Overby, K.R. Sims Jr., M.A. Ackun-Farmmer, Drug delivery systems, in: W.R. Wagner, S.E. Sakiyama-Elbert, G. Zhang, M.J. Yaszemski (Eds.), Biomaterials Science (Fourth Edition), Academic Press, 2020, pp. 1237–1266 (Ch. 1232.1235.1212).
  48. ^ Teleanu, Daniel; Chircov, Cristina; Grumezescu, Alexandru; Volceanov, Adrian; Teleanu, Raluca. Blood-Brain Delivery Methods Using Nanotechnology. Pharmaceutics. 2018-12-11, 10 (4): 269. ISSN 1999-4923. PMC 6321434 . PMID 30544966. doi:10.3390/pharmaceutics10040269  (英语). 

外部链接

编辑