热力学中,压缩因子(Z),是一种修正系数,用于描述真实气体理想气体行为的偏差。它简单地定义为在相同温度压力下,气体摩尔体积理想气体摩尔体积之比。 这是修正理想气体定律以解释真实气体行为的有用热力学性质[1]。一般来说,气体越接近相变、温度越低或压力越大,与理想行为的偏差变得越明显。压缩因子值通常通过状态方程 (EOS) 计算获得,例如以化合物特定的经验常数作为输入的维里方程。 对于由两种或多种纯气体(例如空气或天然气)混合而成的气体,在计算可压缩性之前必须知道气体成分。

定义

编辑
 
气体行为以及该行为与压缩系数的关系的图形表示。

统计力学中,压缩因子定义的描述是:

 

其中,

  •   为压力;
  •   为气体的摩尔体积
  •   为温度;
  •  气体常数

可以看出,Z是同样条件下真实气体摩尔体积与理想气体摩尔体积的比值,它的大小反映出真实气体偏离理想气体的程度。理想气体的Z值在任何条件下恒为1。Z小于1说明真实气体的摩尔体积比同样条件下理想气体的为小,真实气体比理想气体更易压缩。Z大于1则相反。由于它反映出真实气体的压缩难易程度,所以称为压缩因子。压缩因子的量纲为一。

在非常高的压力下,所有气体的Z值都大于1,说明此时分子间排斥力起主要作用。在很低的压力下,所有气体的Z值都接近1,此时真实气体的行为类似于理想气体。两者压力之间,多数气体Z<1,意味着分子间吸引力的存在降低了气体的摩尔体积。

用压缩因子表示的维里方程如下:

 

对p取导数可以看到,真实气体的   图在   时的斜率并不为1,而是趋于一个维里系数值。但对于理想气体  (因为所有压力下Z均=1)。维里系数是温度的函数;在压力低或摩尔体积大的情况下,使    时为0的温度,称为波义耳温度

此外可以类似地使用   等温线代替   等温线,反映出真实气体对理想情况的偏差随压力的变化。所有气体在   时均趋近理想气体,所以任何   等温线在   时均趋于  

将压缩因子的概念应用于临界点,可以类似地得到“临界压缩因子”:

 

利用范德瓦耳斯方程预测的   值为0.375。但实际上将各物质的临界点数据代入上式,得到的   值多小于这个值,表明范德瓦耳斯方程只是一个近似的模型,与真实情况还有一定的距离。不过这也说明   是个大致与气体性质无关的常数,为对应状态原理作下铺垫。

参考资料

编辑
  1. ^ Properties of Natural Gases 互联网档案馆存檔,存档日期2011-02-06.. Includes a chart of compressibility factors versus reduced pressure and reduced temperature (on last page of the PDF document)
  • Peter Atkins, Julio de Paula. Atkins' Physical Chemistry 8th ed. Oxford University Press. 2006.  ISBN 9780198700722.