不等

(重定向自不等於

数学上,不等是表明两个对象的大小或者顺序的二元关系,与相等相对。不等关系主要有四种:

  • ,即小于
  • ,即大于

上述两个属于严格不等

  • ,即小于等于
  • ,即大于等于
  • ,即不等于

将两个表达式用不等符号连起来,就构成了不等式

若不等关系对变量的所有元素都成立,则称其为“绝对的”或“无条件的”。若不等关系只对变量的部分取值成立,而对另一部分将改变方向或失效,则称为条件不等。

不等式两边同时加或减相同的数,或者两边同时乘以或除以同一个正数,不等关系不变。不等式两边同时乘以或除以同一个负数,不等关系改变方向。

符号表示“远大于”。其含义是不确定的,可以是 100 倍的差异,也可能是10个数量级的差异。和方程相联系,它被用来给出一个非常大的值而使方程的输出满足一个特定的结果。

性质

编辑

不等具有下列性质:

三一律
对任意实数  ,只有下列之一是真的:
  •  
  •  
  •  
調換性質:
對任意實數  
  •    是等價的。
  •    是等價的。
传递性
对任意实数   
  • 如果   ,则  
  • 如果   ,則  
  • 如果   ,則  
  • 如果   ,則  
加法性质:
对任意实数   
  •  ;则  
  •  ;则  
乘法性质:
对任意实数   ,且有 
  •  正数 ;则  
  •  为 正数 且  ;则  
  •  负数 ;则  
  •  为 负数 且  ;则  

注意:当遇上不等关系求解时,比如已知   ,不可以认为  ,但根據此描述可知   是真的。

鏈式表示法

编辑
  •   代表「  」。
  •   代表「  」。
  •   代表「  」。
  •   代表「  」。

举例

编辑
  •   ;则
 
  •  ;则
 
  •  ;则
 
  •  ;则
 
  •  ;则
 
  •  ;则
 
  •  ;则
 
  •  ;则
 
  • 對於實數     ,若   ;則
      例-1
    證明
      (10) [前提]
      (15) [前提]
      (20) 源自 (10)
      (25) 源自 (15)

    (20)(25) 經由遞移性質可以得到

      (30) 源自 (20) (25)
      (35) 源自 (30)
      (40) 源自 (35) [結論]
  • 對於實數     ,若   ;則
  例-2
證明
  (45) [前提]
  (50) [前提]
  (55) 源自 (50)
  (60) 源自 (55)

(45)(60) 經由 (例-1) 可以得到

  (65) 源自 (45) (60)
  (70) 源自 (65) [結論]

参见

编辑