inverse function theorem (Q931001)

From Wikidata
Jump to navigation Jump to search
theorem that, if a function is continuously differentiable with nonzero Jacobian determinant at a given point, then it is locally invertible near that point
edit
Language Label Description Also known as
English
inverse function theorem
theorem that, if a function is continuously differentiable with nonzero Jacobian determinant at a given point, then it is locally invertible near that point

    Statements

    0 references
    Inv-Fun-Thm-3.png
    783 × 728; 10 KB
    a counterexample demonstrating the necessity of continuous differentiability in the inverse function theorem: the function 𝑥+2𝑥²sin(¹⁄𝑥) is differentiable (but not continuously so) at 0 and does not admit a local inverse near 0 (English)
    kontraŭekzemplo pri la neceso de kontinua derivebleco en la funkcio de la inversa funkcio: la funkcio 𝑥+2𝑥²sin(¹⁄𝑥) estas derivebla (sed ne kontinue derivebla) ĉe 0, kaj loka inversa funkcio mankas ĉirkaŭ 0 (Esperanto)
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers