SlideShare a Scribd company logo
2017-08-05 @ Tokyo Web Mining
Yuta Kashino ( )
BakFoo, Inc. CEO
Astro Physics /Observational Cosmology
Zope / Python
Realtime Data Platform for Enterprise / Prototyping
Yuta Kashino ( )
arXiv
stat.ML, stat.TH, cs.CV, cs.CL, cs.LG
math-ph, astro-ph
PyCon2016
@yutakashino
https://www.slideshare.net/yutakashino/pyconjp2016
-
-
-
深層学習とベイズ統計
http://bayesiandeeplearning.org/
Shakir Mohamed
http://blog.shakirm.com/wp-content/uploads/2015/11/CSML_BayesDeep.pdf
-
Denker, Schwartz, Wittner, Solla, Howard, Jackel, Hopfield (1987)
Denker and LeCun (1991)
MacKay (1992)
Hinton and van Camp (1993)
Neal (1995)
Barber and Bishop (1998)
Graves (2011)
Blundell, Cornebise, Kavukcuoglu, and Wierstra (2015)
Hernandez-Lobato and Adam (2015)
-
Yarin Gal
Zoubin Ghahramani
Shakir Mohamed
Dastin Tran
Rajesh Ranganath
David Blei
Ian Goodfellow
Columbia U
U of Cambridge
-
- :
- :
- :
- :
- : SGD + BackProp
…
…x1 x2 xd
✓(2)
✓(1)
x
y
y(n)
=
X
j
✓
(2)
j (
X
i
✓
(1)
ji x
(n)
i ) + ✏(n)
p(y(n)
| x(n)
, ✓) = (
X
i
✓
(n)
i x
(n)
i )
✓
D = {x(n)
, y(n)
}N
n=1 = (X, y)
:
- +
- 2012 ILSVRC
→ 2015
-
-
-
-
:
-
- ReLU, DropOut, Mini Batch, SGD(Adam), LSTM…
-
- ImageNet, MSCoCo…
- : GPU,
- :
- Theano, Torch, Caffe, TensorFlow, Chainer, MxNet, PyTorch…
:
-
-
-
-
-
https://lossfunctions.tumblr.com/
:
-
-
-
- Adversarial examples
-
-
=
=
-
-
- :
- :
- :
- :
- : SGD + BackProp
…
…x1 x2 xd
✓(2)
✓(1)
x
y
y(n)
=
X
j
✓
(2)
j (
X
i
✓
(1)
ji x
(n)
i ) + ✏(n)
p(y(n)
| x(n)
, ✓) = (
X
i
✓
(n)
i x
(n)
i )
✓
D = {x(n)
, y(n)
}N
n=1 = (X, y)
- data hypothesis
-
-
P(H | D) =
P(H)P(D | H)
P
H P(H)P(D|H)
P(x) =
X
y
P(x, y)
P(x, y) = P(x)P(y | x)
- :
- :
-
-
- :
P(H | D) =
P(H)P(D | H)
P
H P(H)P(D|H)
likelihood priorposterior
P(✓ | D, m) =
P(D | ✓, m)P(✓ | m)
P(D | m)
m:
P(x | D, m) =
Z
P(x | ✓, D, m)P(✓ | D, m)d✓
P(m | D) =
P(D | m)P(m)
P(D)
-
- :
- :
- :
- :
…
…x1 x2 xd
✓(2)
✓(1)
x
y
✓
D = {x(n)
, y(n)
}N
n=1 = (X, y)
P(✓ | D, m) =
P(D | ✓, m)P(✓ | m)
P(D | m)
m:
P(x | D, m) =
Z
P(x | ✓, D, m)P(✓ | D, m)d✓
prior
- (Variational Bayes)
- (MCMC)
P(✓ | D, m) =
P(D | ✓, m)P(✓ | m)
P(D | m)
m:
p(θ|D) KL q(θ)
ELBO
⇤
= argmin KL(q(✓; ) || p(✓ | D))
= argmin Eq(✓; )[logq(✓; ) p(✓ | D)]
ELBO( ) = Eq(✓; )[p(✓, D) logq(✓; )]
⇤
= argmax ELBO( )
- VI
-
- David MacKay “Lecture 14 of the Cambridge Course”
- PRML 10
http://www.inference.org.uk/itprnn_lectures/
- KL =ELBO
q(✓; 1)
q(✓; 5)
p(✓, D) p(✓, D)
✓✓
⇤
= argmax ELBO( )
ELBO( ) = Eq(✓; )[p(✓, D) logq(✓; )]
- p q
- :
- ADVI: Automatic Differentiation Variational Inference
- BBVI: Blackbox Variational Inference
q(✓; 1)
q(✓; 5)
p(✓, D) p(✓, D)
✓✓
arxiv:1603.00788
arxiv:1401.0118
Reference
- Zoubin Ghahramani “History of Bayesian neural
networks” NIPS 2016 Workshop Bayesian Deep
Learning
- Yarin Gal “Bayesian Deep Learning"O'Reilly
Artificial Intelligence in New York, 2017
深層学習とベイズ統計
- Probabilistic Programing Library/Langage
- Stan, PyMC3, Anglican, Church, Venture,Figaro, WebPPL,
Edward
- : Edward / PyMC3
- (VI)
Metropolis Hastings
Hamilton Monte Carlo
Stochastic Gradient Langevin Dynamics
No-U-Turn Sampler
Blackbox Variational Inference
Automatic Differentiation Variational Inference
Edward
Edward
- Dustin Tran (Open AI)
- Blei Lab
- (PPL)
- Stan, PyMC3, Anglican, Church, Venture,Figaro, WebPPL
- 2016 2 PPL
- TensorFlow
- George Edward Pelham Box
Box-Cox Trans., Box-Jenkins, Ljung-Box test box plot Tukey,
3 2 RA Fisher
PPL
Edward
TensorFlow(TF) + (PPL)
TF:
PPL: + +
Python/Numpy
1. TF:
-
- :
1. TF:
1. TF:
-
-
- GPU / TPU
Inception v3 Inception v4
1. TF:
- Keras, Slim
- TensorBoard
2.
x:
edward
x⇤
s P(x | ↵)
✓⇤
⇠ Beta(✓ | 1, 1)
2.
- ( )
Edward
p(x, ✓) = Beta(✓ | 1, 1)
50Y
n=1
Bernoulli(xn | ✓),
2.
-
log_prob()
-
mean()
-
sample()
3.
Edward TF
3.
256 28*28
4.
X, Z Z
- (Variational Bayes)
- (MCMC)
p(z | x) =
p(x, z)
R
p(x, z)dz
.
4.
4.
p(z|x) KL q(z)
ELBO
4.
Edward KLqp
5. Box’s loop
George Edward Pelham Box
Blei 2014
5. Box’s loop
Edward
- Edward = TensorFlow + +
- TensorFlow
-
- TF GPU, TPU, TensorBoard, Keras
-
- Box’s Loop
- Python
深層学習とベイズ統計
Refrence
•D. Tran, A. Kucukelbir, A. Dieng, M. Rudolph, D. Liang, and
D.M. Blei. Edward: A library for probabilistic modeling,
inference, and criticism.(arXiv preprint arXiv:1610.09787)
•D. Tran, M.D. Hoffman, R.A. Saurous, E. Brevdo, K. Murphy,
and D.M. Blei. Deep probabilistic programming.(arXiv
preprint arXiv:1701.03757)
•Box, G. E. (1976). Science and statistics. (Journal of the
American Statistical Association, 71(356), 791–799.)
•D.M. Blei. Build, Compute, Critique, Repeat: Data Analysis
with Latent Variable Models. (Annual Review of Statistics
and Its Application Volume 1, 2014)
深層学習とベイズ統計
Dropout
- Yarin Gal ”Uncertainty in Deep Learning”
- Dropout
- Dropout : conv
- LeNet with Dropout http://mlg.eng.cam.ac.uk/yarin/blog_2248.html
Dropout
- LeNet DNN
- conv Dropout MNIST
Dropout
- CO2
-
-
-
Questions
kashino@bakfoo.com
@yutakashino
BakFoo, Inc.
NHK NMAPS: +
BakFoo, Inc.
PyConJP 2015
Python
BakFoo, Inc.
BakFoo, Inc.
: SNS +

More Related Content

What's hot (20)

CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法
Hirokatsu Kataoka
 
畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化
Yusuke Uchida
 
数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理
Taiji Suzuki
 
ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定
Akira Masuda
 
生成モデルの Deep Learning
生成モデルの Deep Learning生成モデルの Deep Learning
生成モデルの Deep Learning
Seiya Tokui
 
深層生成モデルと世界モデル
深層生成モデルと世界モデル深層生成モデルと世界モデル
深層生成モデルと世界モデル
Masahiro Suzuki
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究について
Masahiro Suzuki
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門
Kawamoto_Kazuhiko
 
Noisy Labels と戦う深層学習
Noisy Labels と戦う深層学習Noisy Labels と戦う深層学習
Noisy Labels と戦う深層学習
Plot Hong
 
変分ベイズ法の説明
変分ベイズ法の説明変分ベイズ法の説明
変分ベイズ法の説明
Haruka Ozaki
 
自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)
cvpaper. challenge
 
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
Deep Learning JP
 
関数データ解析の概要とその方法
関数データ解析の概要とその方法関数データ解析の概要とその方法
関数データ解析の概要とその方法
Hidetoshi Matsui
 
【解説】 一般逆行列
【解説】 一般逆行列【解説】 一般逆行列
【解説】 一般逆行列
Kenjiro Sugimoto
 
[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations
Deep Learning JP
 
Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)
Shohei Taniguchi
 
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
Deep Learning JP
 
最適化計算の概要まとめ
最適化計算の概要まとめ最適化計算の概要まとめ
最適化計算の概要まとめ
Yuichiro MInato
 
研究分野をサーベイする
研究分野をサーベイする研究分野をサーベイする
研究分野をサーベイする
Takayuki Itoh
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法
Hirokatsu Kataoka
 
畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化
Yusuke Uchida
 
数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理
Taiji Suzuki
 
ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定
Akira Masuda
 
生成モデルの Deep Learning
生成モデルの Deep Learning生成モデルの Deep Learning
生成モデルの Deep Learning
Seiya Tokui
 
深層生成モデルと世界モデル
深層生成モデルと世界モデル深層生成モデルと世界モデル
深層生成モデルと世界モデル
Masahiro Suzuki
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究について
Masahiro Suzuki
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門
Kawamoto_Kazuhiko
 
Noisy Labels と戦う深層学習
Noisy Labels と戦う深層学習Noisy Labels と戦う深層学習
Noisy Labels と戦う深層学習
Plot Hong
 
変分ベイズ法の説明
変分ベイズ法の説明変分ベイズ法の説明
変分ベイズ法の説明
Haruka Ozaki
 
自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)
cvpaper. challenge
 
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
[DL輪読会]Convolutional Conditional Neural Processesと Neural Processes Familyの紹介
Deep Learning JP
 
関数データ解析の概要とその方法
関数データ解析の概要とその方法関数データ解析の概要とその方法
関数データ解析の概要とその方法
Hidetoshi Matsui
 
【解説】 一般逆行列
【解説】 一般逆行列【解説】 一般逆行列
【解説】 一般逆行列
Kenjiro Sugimoto
 
[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations
Deep Learning JP
 
Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)
Shohei Taniguchi
 
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
[DL輪読会]Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
Deep Learning JP
 
最適化計算の概要まとめ
最適化計算の概要まとめ最適化計算の概要まとめ
最適化計算の概要まとめ
Yuichiro MInato
 
研究分野をサーベイする
研究分野をサーベイする研究分野をサーベイする
研究分野をサーベイする
Takayuki Itoh
 

Viewers also liked (14)

オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
Koichi Hamada
 
映像解析における周辺要素
映像解析における周辺要素映像解析における周辺要素
映像解析における周辺要素
Takashi Kaneda
 
Variational Autoencoderの紹介
Variational Autoencoderの紹介Variational Autoencoderの紹介
Variational Autoencoderの紹介
Ken'ichi Matsui
 
対話返答生成における個性の追加反映
対話返答生成における個性の追加反映対話返答生成における個性の追加反映
対話返答生成における個性の追加反映
Koichi Hamada
 
Tokyo webmining 2017-10-28
Tokyo webmining 2017-10-28Tokyo webmining 2017-10-28
Tokyo webmining 2017-10-28
Kimikazu Kato
 
ウェブアプリケーションセキュリティ超入門
ウェブアプリケーションセキュリティ超入門ウェブアプリケーションセキュリティ超入門
ウェブアプリケーションセキュリティ超入門
Hiroshi Tokumaru
 
20161029 TVI Tokyowebmining Seminar for Share
20161029 TVI Tokyowebmining Seminar for Share20161029 TVI Tokyowebmining Seminar for Share
20161029 TVI Tokyowebmining Seminar for Share
Yasushi Gunya
 
動的最適化の今までとこれから
動的最適化の今までとこれから動的最適化の今までとこれから
動的最適化の今までとこれから
Kazuki Baba
 
ドローン農業最前線
ドローン農業最前線ドローン農業最前線
ドローン農業最前線
tetsuya furukawa
 
アンカンファレンス @ 第50回 データマイニング+WEB @東京
アンカンファレンス @ 第50回 データマイニング+WEB @東京アンカンファレンス @ 第50回 データマイニング+WEB @東京
アンカンファレンス @ 第50回 データマイニング+WEB @東京
Izumi Akiyama
 
PL/CUDA - GPU Accelerated In-Database Analytics
PL/CUDA - GPU Accelerated In-Database AnalyticsPL/CUDA - GPU Accelerated In-Database Analytics
PL/CUDA - GPU Accelerated In-Database Analytics
Kohei KaiGai
 
20170310_InDatabaseAnalytics_#1
20170310_InDatabaseAnalytics_#120170310_InDatabaseAnalytics_#1
20170310_InDatabaseAnalytics_#1
Kohei KaiGai
 
計量経済学と 機械学習の交差点入り口 (公開用)
計量経済学と 機械学習の交差点入り口 (公開用)計量経済学と 機械学習の交差点入り口 (公開用)
計量経済学と 機械学習の交差点入り口 (公開用)
Shota Yasui
 
レコメンド研究のあれこれ
レコメンド研究のあれこれレコメンド研究のあれこれ
レコメンド研究のあれこれ
Masahiro Sato
 
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
オープニングトーク - 創設の思い・目的・進行方針  -データマイニング+WEB勉強会@東京
Koichi Hamada
 
映像解析における周辺要素
映像解析における周辺要素映像解析における周辺要素
映像解析における周辺要素
Takashi Kaneda
 
Variational Autoencoderの紹介
Variational Autoencoderの紹介Variational Autoencoderの紹介
Variational Autoencoderの紹介
Ken'ichi Matsui
 
対話返答生成における個性の追加反映
対話返答生成における個性の追加反映対話返答生成における個性の追加反映
対話返答生成における個性の追加反映
Koichi Hamada
 
Tokyo webmining 2017-10-28
Tokyo webmining 2017-10-28Tokyo webmining 2017-10-28
Tokyo webmining 2017-10-28
Kimikazu Kato
 
ウェブアプリケーションセキュリティ超入門
ウェブアプリケーションセキュリティ超入門ウェブアプリケーションセキュリティ超入門
ウェブアプリケーションセキュリティ超入門
Hiroshi Tokumaru
 
20161029 TVI Tokyowebmining Seminar for Share
20161029 TVI Tokyowebmining Seminar for Share20161029 TVI Tokyowebmining Seminar for Share
20161029 TVI Tokyowebmining Seminar for Share
Yasushi Gunya
 
動的最適化の今までとこれから
動的最適化の今までとこれから動的最適化の今までとこれから
動的最適化の今までとこれから
Kazuki Baba
 
ドローン農業最前線
ドローン農業最前線ドローン農業最前線
ドローン農業最前線
tetsuya furukawa
 
アンカンファレンス @ 第50回 データマイニング+WEB @東京
アンカンファレンス @ 第50回 データマイニング+WEB @東京アンカンファレンス @ 第50回 データマイニング+WEB @東京
アンカンファレンス @ 第50回 データマイニング+WEB @東京
Izumi Akiyama
 
PL/CUDA - GPU Accelerated In-Database Analytics
PL/CUDA - GPU Accelerated In-Database AnalyticsPL/CUDA - GPU Accelerated In-Database Analytics
PL/CUDA - GPU Accelerated In-Database Analytics
Kohei KaiGai
 
20170310_InDatabaseAnalytics_#1
20170310_InDatabaseAnalytics_#120170310_InDatabaseAnalytics_#1
20170310_InDatabaseAnalytics_#1
Kohei KaiGai
 
計量経済学と 機械学習の交差点入り口 (公開用)
計量経済学と 機械学習の交差点入り口 (公開用)計量経済学と 機械学習の交差点入り口 (公開用)
計量経済学と 機械学習の交差点入り口 (公開用)
Shota Yasui
 
レコメンド研究のあれこれ
レコメンド研究のあれこれレコメンド研究のあれこれ
レコメンド研究のあれこれ
Masahiro Sato
 

Similar to 深層学習とベイズ統計 (20)

ベイジアンディープニューラルネット
ベイジアンディープニューラルネットベイジアンディープニューラルネット
ベイジアンディープニューラルネット
Yuta Kashino
 
Pycon2017
Pycon2017Pycon2017
Pycon2017
Yuta Kashino
 
時系列データと確率的プログラミング tfp.sts
時系列データと確率的プログラミング tfp.sts時系列データと確率的プログラミング tfp.sts
時系列データと確率的プログラミング tfp.sts
Yuta Kashino
 
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
Deep Learning JP
 
Speed-accuracy trade-off for the diffusion models
Speed-accuracy trade-off for the diffusion modelsSpeed-accuracy trade-off for the diffusion models
Speed-accuracy trade-off for the diffusion models
sosukeito
 
Declare Your Language: Transformation by Strategic Term Rewriting
Declare Your Language: Transformation by Strategic Term RewritingDeclare Your Language: Transformation by Strategic Term Rewriting
Declare Your Language: Transformation by Strategic Term Rewriting
Eelco Visser
 
Wasserstein GAN Tfug2017 07-12
Wasserstein GAN Tfug2017 07-12Wasserstein GAN Tfug2017 07-12
Wasserstein GAN Tfug2017 07-12
Yuta Kashino
 
A/B Testing for Game Design
A/B Testing for Game DesignA/B Testing for Game Design
A/B Testing for Game Design
Trieu Nguyen
 
情報幾何の基礎とEMアルゴリズムの解釈
情報幾何の基礎とEMアルゴリズムの解釈情報幾何の基礎とEMアルゴリズムの解釈
情報幾何の基礎とEMアルゴリズムの解釈
Fukumu Tsutsumi
 
Compilation of COSMO for GPU using LLVM
Compilation of COSMO for GPU using LLVMCompilation of COSMO for GPU using LLVM
Compilation of COSMO for GPU using LLVM
Linaro
 
Query Answering in Probabilistic Datalog+/{ Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/{ Ontologies under Group PreferencesQuery Answering in Probabilistic Datalog+/{ Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/{ Ontologies under Group Preferences
Oana Tifrea-Marciuska
 
確率的プログラミングライブラリEdward
確率的プログラミングライブラリEdward確率的プログラミングライブラリEdward
確率的プログラミングライブラリEdward
Yuta Kashino
 
Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/– Ontologies under Group PreferencesQuery Answering in Probabilistic Datalog+/– Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences
Oana Tifrea-Marciuska
 
Wi13 otm
Wi13 otmWi13 otm
Wi13 otm
Oana Tifrea-Marciuska
 
Alastair Butler - 2015 - Round trips with meaning stopovers
Alastair Butler - 2015 - Round trips with meaning stopoversAlastair Butler - 2015 - Round trips with meaning stopovers
Alastair Butler - 2015 - Round trips with meaning stopovers
Association for Computational Linguistics
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
Frank Nielsen
 
Computational Tools and Techniques for Numerical Macro-Financial Modeling
Computational Tools and Techniques for Numerical Macro-Financial ModelingComputational Tools and Techniques for Numerical Macro-Financial Modeling
Computational Tools and Techniques for Numerical Macro-Financial Modeling
Victor Zhorin
 
DAW: Duplicate-AWare Federated Query Processing over the Web of Data
DAW: Duplicate-AWare Federated Query Processing over the Web of DataDAW: Duplicate-AWare Federated Query Processing over the Web of Data
DAW: Duplicate-AWare Federated Query Processing over the Web of Data
Muhammad Saleem
 
Appendix of heterogeneous cellular network user distribution model
Appendix of heterogeneous cellular network user distribution modelAppendix of heterogeneous cellular network user distribution model
Appendix of heterogeneous cellular network user distribution model
Cora Li
 
Fast parallelizable scenario-based stochastic optimization
Fast parallelizable scenario-based stochastic optimizationFast parallelizable scenario-based stochastic optimization
Fast parallelizable scenario-based stochastic optimization
Pantelis Sopasakis
 
ベイジアンディープニューラルネット
ベイジアンディープニューラルネットベイジアンディープニューラルネット
ベイジアンディープニューラルネット
Yuta Kashino
 
時系列データと確率的プログラミング tfp.sts
時系列データと確率的プログラミング tfp.sts時系列データと確率的プログラミング tfp.sts
時系列データと確率的プログラミング tfp.sts
Yuta Kashino
 
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
Deep Learning JP
 
Speed-accuracy trade-off for the diffusion models
Speed-accuracy trade-off for the diffusion modelsSpeed-accuracy trade-off for the diffusion models
Speed-accuracy trade-off for the diffusion models
sosukeito
 
Declare Your Language: Transformation by Strategic Term Rewriting
Declare Your Language: Transformation by Strategic Term RewritingDeclare Your Language: Transformation by Strategic Term Rewriting
Declare Your Language: Transformation by Strategic Term Rewriting
Eelco Visser
 
Wasserstein GAN Tfug2017 07-12
Wasserstein GAN Tfug2017 07-12Wasserstein GAN Tfug2017 07-12
Wasserstein GAN Tfug2017 07-12
Yuta Kashino
 
A/B Testing for Game Design
A/B Testing for Game DesignA/B Testing for Game Design
A/B Testing for Game Design
Trieu Nguyen
 
情報幾何の基礎とEMアルゴリズムの解釈
情報幾何の基礎とEMアルゴリズムの解釈情報幾何の基礎とEMアルゴリズムの解釈
情報幾何の基礎とEMアルゴリズムの解釈
Fukumu Tsutsumi
 
Compilation of COSMO for GPU using LLVM
Compilation of COSMO for GPU using LLVMCompilation of COSMO for GPU using LLVM
Compilation of COSMO for GPU using LLVM
Linaro
 
Query Answering in Probabilistic Datalog+/{ Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/{ Ontologies under Group PreferencesQuery Answering in Probabilistic Datalog+/{ Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/{ Ontologies under Group Preferences
Oana Tifrea-Marciuska
 
確率的プログラミングライブラリEdward
確率的プログラミングライブラリEdward確率的プログラミングライブラリEdward
確率的プログラミングライブラリEdward
Yuta Kashino
 
Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/– Ontologies under Group PreferencesQuery Answering in Probabilistic Datalog+/– Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences
Oana Tifrea-Marciuska
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
Frank Nielsen
 
Computational Tools and Techniques for Numerical Macro-Financial Modeling
Computational Tools and Techniques for Numerical Macro-Financial ModelingComputational Tools and Techniques for Numerical Macro-Financial Modeling
Computational Tools and Techniques for Numerical Macro-Financial Modeling
Victor Zhorin
 
DAW: Duplicate-AWare Federated Query Processing over the Web of Data
DAW: Duplicate-AWare Federated Query Processing over the Web of DataDAW: Duplicate-AWare Federated Query Processing over the Web of Data
DAW: Duplicate-AWare Federated Query Processing over the Web of Data
Muhammad Saleem
 
Appendix of heterogeneous cellular network user distribution model
Appendix of heterogeneous cellular network user distribution modelAppendix of heterogeneous cellular network user distribution model
Appendix of heterogeneous cellular network user distribution model
Cora Li
 
Fast parallelizable scenario-based stochastic optimization
Fast parallelizable scenario-based stochastic optimizationFast parallelizable scenario-based stochastic optimization
Fast parallelizable scenario-based stochastic optimization
Pantelis Sopasakis
 

More from Yuta Kashino (20)

Python kansai2019
Python kansai2019Python kansai2019
Python kansai2019
Yuta Kashino
 
Mlse20190208
Mlse20190208Mlse20190208
Mlse20190208
Yuta Kashino
 
Ml15m2018 10-27
Ml15m2018 10-27Ml15m2018 10-27
Ml15m2018 10-27
Yuta Kashino
 
Pydata2017 11-29
Pydata2017 11-29Pydata2017 11-29
Pydata2017 11-29
Yuta Kashino
 
私は如何にして心配するのを止めてPyTorchを愛するようになったか
私は如何にして心配するのを止めてPyTorchを愛するようになったか私は如何にして心配するのを止めてPyTorchを愛するようになったか
私は如何にして心配するのを止めてPyTorchを愛するようになったか
Yuta Kashino
 
PyConJP2016: 週末サイエンティストのススメ
PyConJP2016: 週末サイエンティストのススメPyConJP2016: 週末サイエンティストのススメ
PyConJP2016: 週末サイエンティストのススメ
Yuta Kashino
 
機械学習ビジネス研究会 第01回
機械学習ビジネス研究会 第01回機械学習ビジネス研究会 第01回
機械学習ビジネス研究会 第01回
Yuta Kashino
 
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
Yuta Kashino
 
Chainer meetup2016 03-19pub
Chainer meetup2016 03-19pubChainer meetup2016 03-19pub
Chainer meetup2016 03-19pub
Yuta Kashino
 
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
Yuta Kashino
 
深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル
Yuta Kashino
 
TensorFlow White Paperを読む
TensorFlow White Paperを読むTensorFlow White Paperを読む
TensorFlow White Paperを読む
Yuta Kashino
 
Deep learning Libs @twm
Deep learning Libs @twmDeep learning Libs @twm
Deep learning Libs @twm
Yuta Kashino
 
日本のオープンデータプラットフォームをPythonでつくる
日本のオープンデータプラットフォームをPythonでつくる日本のオープンデータプラットフォームをPythonでつくる
日本のオープンデータプラットフォームをPythonでつくる
Yuta Kashino
 
Gunosy2015 09-16ts
Gunosy2015 09-16tsGunosy2015 09-16ts
Gunosy2015 09-16ts
Yuta Kashino
 
Gunosy2015-08-05
Gunosy2015-08-05Gunosy2015-08-05
Gunosy2015-08-05
Yuta Kashino
 
Gunosy2015 07-07
Gunosy2015 07-07Gunosy2015 07-07
Gunosy2015 07-07
Yuta Kashino
 
Gunosy2015-06-03
Gunosy2015-06-03Gunosy2015-06-03
Gunosy2015-06-03
Yuta Kashino
 
PyDataTokyo201-05-22
PyDataTokyo201-05-22PyDataTokyo201-05-22
PyDataTokyo201-05-22
Yuta Kashino
 
Gunosy go2015 06-02
Gunosy go2015 06-02Gunosy go2015 06-02
Gunosy go2015 06-02
Yuta Kashino
 
私は如何にして心配するのを止めてPyTorchを愛するようになったか
私は如何にして心配するのを止めてPyTorchを愛するようになったか私は如何にして心配するのを止めてPyTorchを愛するようになったか
私は如何にして心配するのを止めてPyTorchを愛するようになったか
Yuta Kashino
 
PyConJP2016: 週末サイエンティストのススメ
PyConJP2016: 週末サイエンティストのススメPyConJP2016: 週末サイエンティストのススメ
PyConJP2016: 週末サイエンティストのススメ
Yuta Kashino
 
機械学習ビジネス研究会 第01回
機械学習ビジネス研究会 第01回機械学習ビジネス研究会 第01回
機械学習ビジネス研究会 第01回
Yuta Kashino
 
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02深層学習ライブラリの環境問題Chainer Meetup2016 07-02
深層学習ライブラリの環境問題Chainer Meetup2016 07-02
Yuta Kashino
 
Chainer meetup2016 03-19pub
Chainer meetup2016 03-19pubChainer meetup2016 03-19pub
Chainer meetup2016 03-19pub
Yuta Kashino
 
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
"Automatic Variational Inference in Stan" NIPS2015_yomi2016-01-20
Yuta Kashino
 
深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル
Yuta Kashino
 
TensorFlow White Paperを読む
TensorFlow White Paperを読むTensorFlow White Paperを読む
TensorFlow White Paperを読む
Yuta Kashino
 
Deep learning Libs @twm
Deep learning Libs @twmDeep learning Libs @twm
Deep learning Libs @twm
Yuta Kashino
 
日本のオープンデータプラットフォームをPythonでつくる
日本のオープンデータプラットフォームをPythonでつくる日本のオープンデータプラットフォームをPythonでつくる
日本のオープンデータプラットフォームをPythonでつくる
Yuta Kashino
 
Gunosy2015 09-16ts
Gunosy2015 09-16tsGunosy2015 09-16ts
Gunosy2015 09-16ts
Yuta Kashino
 
PyDataTokyo201-05-22
PyDataTokyo201-05-22PyDataTokyo201-05-22
PyDataTokyo201-05-22
Yuta Kashino
 
Gunosy go2015 06-02
Gunosy go2015 06-02Gunosy go2015 06-02
Gunosy go2015 06-02
Yuta Kashino
 

Recently uploaded (20)

Caching for Performance Masterclass: Caching Strategies
Caching for Performance Masterclass: Caching StrategiesCaching for Performance Masterclass: Caching Strategies
Caching for Performance Masterclass: Caching Strategies
ScyllaDB
 
AI Trends and Fun Demos – Sotheby’s Rehoboth Presentation
AI Trends and Fun Demos – Sotheby’s Rehoboth PresentationAI Trends and Fun Demos – Sotheby’s Rehoboth Presentation
AI Trends and Fun Demos – Sotheby’s Rehoboth Presentation
Ethan Holland
 
Mastering ChatGPT & LLMs for Practical Applications: Tips, Tricks, and Use Cases
Mastering ChatGPT & LLMs for Practical Applications: Tips, Tricks, and Use CasesMastering ChatGPT & LLMs for Practical Applications: Tips, Tricks, and Use Cases
Mastering ChatGPT & LLMs for Practical Applications: Tips, Tricks, and Use Cases
Sanjay Willie
 
Not a Kubernetes fan? The state of PaaS in 2025
Not a Kubernetes fan? The state of PaaS in 2025Not a Kubernetes fan? The state of PaaS in 2025
Not a Kubernetes fan? The state of PaaS in 2025
Anthony Dahanne
 
Data-Driven Public Safety: Reliable Data When Every Second Counts
Data-Driven Public Safety: Reliable Data When Every Second CountsData-Driven Public Safety: Reliable Data When Every Second Counts
Data-Driven Public Safety: Reliable Data When Every Second Counts
Safe Software
 
Caching for Performance Masterclass: Caching at Scale
Caching for Performance Masterclass: Caching at ScaleCaching for Performance Masterclass: Caching at Scale
Caching for Performance Masterclass: Caching at Scale
ScyllaDB
 
Getting Started with AWS - Enterprise Landing Zone for Terraform Learning & D...
Getting Started with AWS - Enterprise Landing Zone for Terraform Learning & D...Getting Started with AWS - Enterprise Landing Zone for Terraform Learning & D...
Getting Started with AWS - Enterprise Landing Zone for Terraform Learning & D...
Chris Wahl
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Taiwan's Digital Security Pillars: Cyber Infrastructure
Taiwan's Digital Security Pillars: Cyber InfrastructureTaiwan's Digital Security Pillars: Cyber Infrastructure
Taiwan's Digital Security Pillars: Cyber Infrastructure
Charles Mok
 
Transcript: AI in publishing: Your questions answered - Tech Forum 2025
Transcript: AI in publishing: Your questions answered - Tech Forum 2025Transcript: AI in publishing: Your questions answered - Tech Forum 2025
Transcript: AI in publishing: Your questions answered - Tech Forum 2025
BookNet Canada
 
AMER Introduction to ThousandEyes Webinar
AMER Introduction to ThousandEyes WebinarAMER Introduction to ThousandEyes Webinar
AMER Introduction to ThousandEyes Webinar
ThousandEyes
 
The Constructor's Digital Transformation Playbook: Reducing Risk With Technology
The Constructor's Digital Transformation Playbook: Reducing Risk With TechnologyThe Constructor's Digital Transformation Playbook: Reducing Risk With Technology
The Constructor's Digital Transformation Playbook: Reducing Risk With Technology
Aggregage
 
"Kubernetes operators. How we migrated Release Management to controllers", De...
"Kubernetes operators. How we migrated Release Management to controllers", De..."Kubernetes operators. How we migrated Release Management to controllers", De...
"Kubernetes operators. How we migrated Release Management to controllers", De...
Fwdays
 
"10 Pitfalls of a Platform Team", Yura Rochniak
"10 Pitfalls of a Platform Team", Yura Rochniak"10 Pitfalls of a Platform Team", Yura Rochniak
"10 Pitfalls of a Platform Team", Yura Rochniak
Fwdays
 
Kickstart Your QA: An Introduction to Automated Regression Testing Tools
Kickstart Your QA: An Introduction to Automated Regression Testing ToolsKickstart Your QA: An Introduction to Automated Regression Testing Tools
Kickstart Your QA: An Introduction to Automated Regression Testing Tools
Shubham Joshi
 
What is FinTech A Complete Guide to Financial Technology.pdf
What is FinTech A Complete Guide to Financial Technology.pdfWhat is FinTech A Complete Guide to Financial Technology.pdf
What is FinTech A Complete Guide to Financial Technology.pdf
Yodaplus Technologies Private Limited
 
ISOIEC 42001 AI Management System Slides
ISOIEC 42001 AI Management System SlidesISOIEC 42001 AI Management System Slides
ISOIEC 42001 AI Management System Slides
GilangRamadhan884333
 
Build with AI on Google Cloud Session #3
Build with AI on Google Cloud Session #3Build with AI on Google Cloud Session #3
Build with AI on Google Cloud Session #3
Margaret Maynard-Reid
 
Webinar: LF Energy GEISA: Addressing edge interoperability at the meter
Webinar: LF Energy GEISA: Addressing edge interoperability at the meterWebinar: LF Energy GEISA: Addressing edge interoperability at the meter
Webinar: LF Energy GEISA: Addressing edge interoperability at the meter
DanBrown980551
 
"Zero-sales lost — Incident Management", Igor Drozd
"Zero-sales lost — Incident Management", Igor Drozd"Zero-sales lost — Incident Management", Igor Drozd
"Zero-sales lost — Incident Management", Igor Drozd
Fwdays
 
Caching for Performance Masterclass: Caching Strategies
Caching for Performance Masterclass: Caching StrategiesCaching for Performance Masterclass: Caching Strategies
Caching for Performance Masterclass: Caching Strategies
ScyllaDB
 
AI Trends and Fun Demos – Sotheby’s Rehoboth Presentation
AI Trends and Fun Demos – Sotheby’s Rehoboth PresentationAI Trends and Fun Demos – Sotheby’s Rehoboth Presentation
AI Trends and Fun Demos – Sotheby’s Rehoboth Presentation
Ethan Holland
 
Mastering ChatGPT & LLMs for Practical Applications: Tips, Tricks, and Use Cases
Mastering ChatGPT & LLMs for Practical Applications: Tips, Tricks, and Use CasesMastering ChatGPT & LLMs for Practical Applications: Tips, Tricks, and Use Cases
Mastering ChatGPT & LLMs for Practical Applications: Tips, Tricks, and Use Cases
Sanjay Willie
 
Not a Kubernetes fan? The state of PaaS in 2025
Not a Kubernetes fan? The state of PaaS in 2025Not a Kubernetes fan? The state of PaaS in 2025
Not a Kubernetes fan? The state of PaaS in 2025
Anthony Dahanne
 
Data-Driven Public Safety: Reliable Data When Every Second Counts
Data-Driven Public Safety: Reliable Data When Every Second CountsData-Driven Public Safety: Reliable Data When Every Second Counts
Data-Driven Public Safety: Reliable Data When Every Second Counts
Safe Software
 
Caching for Performance Masterclass: Caching at Scale
Caching for Performance Masterclass: Caching at ScaleCaching for Performance Masterclass: Caching at Scale
Caching for Performance Masterclass: Caching at Scale
ScyllaDB
 
Getting Started with AWS - Enterprise Landing Zone for Terraform Learning & D...
Getting Started with AWS - Enterprise Landing Zone for Terraform Learning & D...Getting Started with AWS - Enterprise Landing Zone for Terraform Learning & D...
Getting Started with AWS - Enterprise Landing Zone for Terraform Learning & D...
Chris Wahl
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Taiwan's Digital Security Pillars: Cyber Infrastructure
Taiwan's Digital Security Pillars: Cyber InfrastructureTaiwan's Digital Security Pillars: Cyber Infrastructure
Taiwan's Digital Security Pillars: Cyber Infrastructure
Charles Mok
 
Transcript: AI in publishing: Your questions answered - Tech Forum 2025
Transcript: AI in publishing: Your questions answered - Tech Forum 2025Transcript: AI in publishing: Your questions answered - Tech Forum 2025
Transcript: AI in publishing: Your questions answered - Tech Forum 2025
BookNet Canada
 
AMER Introduction to ThousandEyes Webinar
AMER Introduction to ThousandEyes WebinarAMER Introduction to ThousandEyes Webinar
AMER Introduction to ThousandEyes Webinar
ThousandEyes
 
The Constructor's Digital Transformation Playbook: Reducing Risk With Technology
The Constructor's Digital Transformation Playbook: Reducing Risk With TechnologyThe Constructor's Digital Transformation Playbook: Reducing Risk With Technology
The Constructor's Digital Transformation Playbook: Reducing Risk With Technology
Aggregage
 
"Kubernetes operators. How we migrated Release Management to controllers", De...
"Kubernetes operators. How we migrated Release Management to controllers", De..."Kubernetes operators. How we migrated Release Management to controllers", De...
"Kubernetes operators. How we migrated Release Management to controllers", De...
Fwdays
 
"10 Pitfalls of a Platform Team", Yura Rochniak
"10 Pitfalls of a Platform Team", Yura Rochniak"10 Pitfalls of a Platform Team", Yura Rochniak
"10 Pitfalls of a Platform Team", Yura Rochniak
Fwdays
 
Kickstart Your QA: An Introduction to Automated Regression Testing Tools
Kickstart Your QA: An Introduction to Automated Regression Testing ToolsKickstart Your QA: An Introduction to Automated Regression Testing Tools
Kickstart Your QA: An Introduction to Automated Regression Testing Tools
Shubham Joshi
 
ISOIEC 42001 AI Management System Slides
ISOIEC 42001 AI Management System SlidesISOIEC 42001 AI Management System Slides
ISOIEC 42001 AI Management System Slides
GilangRamadhan884333
 
Build with AI on Google Cloud Session #3
Build with AI on Google Cloud Session #3Build with AI on Google Cloud Session #3
Build with AI on Google Cloud Session #3
Margaret Maynard-Reid
 
Webinar: LF Energy GEISA: Addressing edge interoperability at the meter
Webinar: LF Energy GEISA: Addressing edge interoperability at the meterWebinar: LF Energy GEISA: Addressing edge interoperability at the meter
Webinar: LF Energy GEISA: Addressing edge interoperability at the meter
DanBrown980551
 
"Zero-sales lost — Incident Management", Igor Drozd
"Zero-sales lost — Incident Management", Igor Drozd"Zero-sales lost — Incident Management", Igor Drozd
"Zero-sales lost — Incident Management", Igor Drozd
Fwdays
 

深層学習とベイズ統計